This commit is contained in:
Your Name
2024-04-27 03:15:27 -05:00
parent f23e5441b5
commit 02a5a8d343
70 changed files with 5217 additions and 105736 deletions

Binary file not shown.

View File

@@ -0,0 +1,92 @@
#include <algorithm>
#include <cassert>
#include <csignal>
#include <iostream>
#include <map>
#include <string>
typedef void (*sighandler_t)(int sig);
#include "cereal/services.h"
#include "cereal/messaging/impl_msgq.h"
#include "cereal/messaging/impl_zmq.h"
std::atomic<bool> do_exit = false;
static void set_do_exit(int sig) {
do_exit = true;
}
void sigpipe_handler(int sig) {
assert(sig == SIGPIPE);
std::cout << "SIGPIPE received" << std::endl;
}
static std::vector<std::string> get_services(std::string whitelist_str, bool zmq_to_msgq) {
std::vector<std::string> service_list;
for (const auto& it : services) {
std::string name = it.second.name;
bool in_whitelist = whitelist_str.find(name) != std::string::npos;
if (name == "plusFrame" || name == "uiLayoutState" || (zmq_to_msgq && !in_whitelist)) {
continue;
}
service_list.push_back(name);
}
return service_list;
}
int main(int argc, char** argv) {
signal(SIGPIPE, (sighandler_t)sigpipe_handler);
signal(SIGINT, (sighandler_t)set_do_exit);
signal(SIGTERM, (sighandler_t)set_do_exit);
bool zmq_to_msgq = argc > 2;
std::string ip = zmq_to_msgq ? argv[1] : "127.0.0.1";
std::string whitelist_str = zmq_to_msgq ? std::string(argv[2]) : "";
Poller *poller;
Context *pub_context;
Context *sub_context;
if (zmq_to_msgq) { // republishes zmq debugging messages as msgq
poller = new ZMQPoller();
pub_context = new MSGQContext();
sub_context = new ZMQContext();
} else {
poller = new MSGQPoller();
pub_context = new ZMQContext();
sub_context = new MSGQContext();
}
std::map<SubSocket*, PubSocket*> sub2pub;
for (auto endpoint : get_services(whitelist_str, zmq_to_msgq)) {
PubSocket * pub_sock;
SubSocket * sub_sock;
if (zmq_to_msgq) {
pub_sock = new MSGQPubSocket();
sub_sock = new ZMQSubSocket();
} else {
pub_sock = new ZMQPubSocket();
sub_sock = new MSGQSubSocket();
}
pub_sock->connect(pub_context, endpoint);
sub_sock->connect(sub_context, endpoint, ip, false);
poller->registerSocket(sub_sock);
sub2pub[sub_sock] = pub_sock;
}
while (!do_exit) {
for (auto sub_sock : poller->poll(100)) {
Message * msg = sub_sock->receive();
if (msg == NULL) continue;
int ret;
do {
ret = sub2pub[sub_sock]->sendMessage(msg);
} while (ret == -1 && errno == EINTR && !do_exit);
assert(ret >= 0 || do_exit);
delete msg;
if (do_exit) break;
}
}
return 0;
}

50
cereal/messaging/demo.cc Normal file
View File

@@ -0,0 +1,50 @@
#include <iostream>
#include <cstddef>
#include <chrono>
#include <thread>
#include <cassert>
#include "cereal/messaging/messaging.h"
#include "cereal/messaging/impl_zmq.h"
#define MSGS 1e5
int main() {
Context * c = Context::create();
SubSocket * sub_sock = SubSocket::create(c, "controlsState");
PubSocket * pub_sock = PubSocket::create(c, "controlsState");
char data[8];
Poller * poller = Poller::create({sub_sock});
auto start = std::chrono::steady_clock::now();
for (uint64_t i = 0; i < MSGS; i++){
*(uint64_t*)data = i;
pub_sock->send(data, 8);
auto r = poller->poll(100);
for (auto p : r){
Message * m = p->receive();
uint64_t ii = *(uint64_t*)m->getData();
assert(i == ii);
delete m;
}
}
auto end = std::chrono::steady_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count() / 1e9;
double throughput = ((double) MSGS / (double) elapsed);
std::cout << throughput << " msg/s" << std::endl;
delete poller;
delete sub_sock;
delete pub_sock;
delete c;
return 0;
}

29
cereal/messaging/demo.py Normal file
View File

@@ -0,0 +1,29 @@
import time
from messaging_pyx import Context, Poller, SubSocket, PubSocket
MSGS = 1e5
if __name__ == "__main__":
c = Context()
sub_sock = SubSocket()
pub_sock = PubSocket()
sub_sock.connect(c, "controlsState")
pub_sock.connect(c, "controlsState")
poller = Poller()
poller.registerSocket(sub_sock)
t = time.time()
for i in range(int(MSGS)):
bts = i.to_bytes(4, 'little')
pub_sock.send(bts)
for s in poller.poll(100):
dat = s.receive()
ii = int.from_bytes(dat, 'little')
assert(i == ii)
dt = time.time() - t
print("%.1f msg/s" % (MSGS / dt))

236
cereal/messaging/event.cc Normal file
View File

@@ -0,0 +1,236 @@
#include <cassert>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <string>
#include <exception>
#include <filesystem>
#include <unistd.h>
#include <poll.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include "cereal/messaging/event.h"
#ifndef __APPLE__
#include <sys/eventfd.h>
void event_state_shm_mmap(std::string endpoint, std::string identifier, char **shm_mem, std::string *shm_path) {
const char* op_prefix = std::getenv("OPENPILOT_PREFIX");
std::string full_path = "/dev/shm/";
if (op_prefix) {
full_path += std::string(op_prefix) + "/";
}
full_path += CEREAL_EVENTS_PREFIX + "/";
if (identifier.size() > 0) {
full_path += identifier + "/";
}
std::filesystem::create_directories(full_path);
full_path += endpoint;
int shm_fd = open(full_path.c_str(), O_RDWR | O_CREAT, 0664);
if (shm_fd < 0) {
throw std::runtime_error("Could not open shared memory file.");
}
int rc = ftruncate(shm_fd, sizeof(EventState));
if (rc < 0){
close(shm_fd);
throw std::runtime_error("Could not truncate shared memory file.");
}
char * mem = (char*)mmap(NULL, sizeof(EventState), PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
close(shm_fd);
if (mem == nullptr) {
throw std::runtime_error("Could not map shared memory file.");
}
if (shm_mem != nullptr)
*shm_mem = mem;
if (shm_path != nullptr)
*shm_path = full_path;
}
SocketEventHandle::SocketEventHandle(std::string endpoint, std::string identifier, bool override) {
char *mem;
event_state_shm_mmap(endpoint, identifier, &mem, &this->shm_path);
this->state = (EventState*)mem;
if (override) {
this->state->fds[0] = eventfd(0, EFD_NONBLOCK);
this->state->fds[1] = eventfd(0, EFD_NONBLOCK);
}
}
SocketEventHandle::~SocketEventHandle() {
close(this->state->fds[0]);
close(this->state->fds[1]);
munmap(this->state, sizeof(EventState));
unlink(this->shm_path.c_str());
}
bool SocketEventHandle::is_enabled() {
return this->state->enabled;
}
void SocketEventHandle::set_enabled(bool enabled) {
this->state->enabled = enabled;
}
Event SocketEventHandle::recv_called() {
return Event(this->state->fds[0]);
}
Event SocketEventHandle::recv_ready() {
return Event(this->state->fds[1]);
}
void SocketEventHandle::toggle_fake_events(bool enabled) {
if (enabled)
setenv("CEREAL_FAKE", "1", true);
else
unsetenv("CEREAL_FAKE");
}
void SocketEventHandle::set_fake_prefix(std::string prefix) {
if (prefix.size() == 0) {
unsetenv("CEREAL_FAKE_PREFIX");
} else {
setenv("CEREAL_FAKE_PREFIX", prefix.c_str(), true);
}
}
std::string SocketEventHandle::fake_prefix() {
const char* prefix = std::getenv("CEREAL_FAKE_PREFIX");
if (prefix == nullptr) {
return "";
} else {
return std::string(prefix);
}
}
Event::Event(int fd): event_fd(fd) {}
void Event::set() const {
throw_if_invalid();
uint64_t val = 1;
size_t count = write(this->event_fd, &val, sizeof(uint64_t));
assert(count == sizeof(uint64_t));
}
int Event::clear() const {
throw_if_invalid();
uint64_t val = 0;
// read the eventfd to clear it
read(this->event_fd, &val, sizeof(uint64_t));
return val;
}
void Event::wait(int timeout_sec) const {
throw_if_invalid();
int event_count;
struct pollfd fds = { this->event_fd, POLLIN, 0 };
struct timespec timeout = { timeout_sec, 0 };;
sigset_t signals;
sigfillset(&signals);
sigdelset(&signals, SIGALRM);
sigdelset(&signals, SIGINT);
sigdelset(&signals, SIGTERM);
sigdelset(&signals, SIGQUIT);
event_count = ppoll(&fds, 1, timeout_sec < 0 ? nullptr : &timeout, &signals);
if (event_count == 0) {
throw std::runtime_error("Event timed out pid: " + std::to_string(getpid()));
} else if (event_count < 0) {
throw std::runtime_error("Event poll failed, errno: " + std::to_string(errno) + " pid: " + std::to_string(getpid()));
}
}
bool Event::peek() const {
throw_if_invalid();
int event_count;
struct pollfd fds = { this->event_fd, POLLIN, 0 };
// poll with timeout zero to return status immediately
event_count = poll(&fds, 1, 0);
return event_count != 0;
}
bool Event::is_valid() const {
return event_fd != -1;
}
int Event::fd() const {
return event_fd;
}
int Event::wait_for_one(const std::vector<Event>& events, int timeout_sec) {
struct pollfd fds[events.size()];
for (size_t i = 0; i < events.size(); i++) {
fds[i] = { events[i].fd(), POLLIN, 0 };
}
struct timespec timeout = { timeout_sec, 0 };
sigset_t signals;
sigfillset(&signals);
sigdelset(&signals, SIGALRM);
sigdelset(&signals, SIGINT);
sigdelset(&signals, SIGTERM);
sigdelset(&signals, SIGQUIT);
int event_count = ppoll(fds, events.size(), timeout_sec < 0 ? nullptr : &timeout, &signals);
if (event_count == 0) {
throw std::runtime_error("Event timed out pid: " + std::to_string(getpid()));
} else if (event_count < 0) {
throw std::runtime_error("Event poll failed, errno: " + std::to_string(errno) + " pid: " + std::to_string(getpid()));
}
for (size_t i = 0; i < events.size(); i++) {
if (fds[i].revents & POLLIN) {
return i;
}
}
throw std::runtime_error("Event poll failed, no events ready");
}
#else
// Stub implementation for Darwin, which does not support eventfd
void event_state_shm_mmap(std::string endpoint, std::string identifier, char **shm_mem, std::string *shm_path) {}
SocketEventHandle::SocketEventHandle(std::string endpoint, std::string identifier, bool override) {
std::cerr << "SocketEventHandle not supported on macOS" << std::endl;
assert(false);
}
SocketEventHandle::~SocketEventHandle() {}
bool SocketEventHandle::is_enabled() { return this->state->enabled; }
void SocketEventHandle::set_enabled(bool enabled) {}
Event SocketEventHandle::recv_called() { return Event(); }
Event SocketEventHandle::recv_ready() { return Event(); }
void SocketEventHandle::toggle_fake_events(bool enabled) {}
void SocketEventHandle::set_fake_prefix(std::string prefix) {}
std::string SocketEventHandle::fake_prefix() { return ""; }
Event::Event(int fd): event_fd(fd) {}
void Event::set() const {}
int Event::clear() const { return 0; }
void Event::wait(int timeout_sec) const {}
bool Event::peek() const { return false; }
bool Event::is_valid() const { return false; }
int Event::fd() const { return this->event_fd; }
int Event::wait_for_one(const std::vector<Event>& events, int timeout_sec) { return -1; }
#endif

58
cereal/messaging/event.h Normal file
View File

@@ -0,0 +1,58 @@
#pragma once
#include <string>
#include <vector>
#define CEREAL_EVENTS_PREFIX std::string("cereal_events")
void event_state_shm_mmap(std::string endpoint, std::string identifier, char **shm_mem, std::string *shm_path);
enum EventPurpose {
RECV_CALLED,
RECV_READY
};
struct EventState {
int fds[2];
bool enabled;
};
class Event {
private:
int event_fd = -1;
inline void throw_if_invalid() const {
if (!this->is_valid()) {
throw std::runtime_error("Event does not have valid file descriptor.");
}
}
public:
Event(int fd = -1);
void set() const;
int clear() const;
void wait(int timeout_sec = -1) const;
bool peek() const;
bool is_valid() const;
int fd() const;
static int wait_for_one(const std::vector<Event>& events, int timeout_sec = -1);
};
class SocketEventHandle {
private:
std::string shm_path;
EventState* state;
public:
SocketEventHandle(std::string endpoint, std::string identifier = "", bool override = true);
~SocketEventHandle();
bool is_enabled();
void set_enabled(bool enabled);
Event recv_called();
Event recv_ready();
static void toggle_fake_events(bool enabled);
static void set_fake_prefix(std::string prefix);
static std::string fake_prefix();
};

View File

@@ -0,0 +1,9 @@
#include "cereal/messaging/impl_fake.h"
void FakePoller::registerSocket(SubSocket *socket) {
this->sockets.push_back(socket);
}
std::vector<SubSocket*> FakePoller::poll(int timeout) {
return this->sockets;
}

View File

@@ -0,0 +1,67 @@
#pragma once
#include <cassert>
#include <iostream>
#include <string>
#include <vector>
#include <filesystem>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include "cereal/messaging/messaging.h"
#include "cereal/messaging/event.h"
template<typename TSubSocket>
class FakeSubSocket: public TSubSocket {
private:
Event *recv_called = nullptr;
Event *recv_ready = nullptr;
EventState *state = nullptr;
public:
FakeSubSocket(): TSubSocket() {}
~FakeSubSocket() {
delete recv_called;
delete recv_ready;
if (state != nullptr) {
munmap(state, sizeof(EventState));
}
}
int connect(Context *context, std::string endpoint, std::string address, bool conflate=false, bool check_endpoint=true) override {
const char* cereal_prefix = std::getenv("CEREAL_FAKE_PREFIX");
char* mem;
std::string identifier = cereal_prefix != nullptr ? std::string(cereal_prefix) : "";
event_state_shm_mmap(endpoint, identifier, &mem, nullptr);
this->state = (EventState*)mem;
this->recv_called = new Event(state->fds[EventPurpose::RECV_CALLED]);
this->recv_ready = new Event(state->fds[EventPurpose::RECV_READY]);
return TSubSocket::connect(context, endpoint, address, conflate, check_endpoint);
}
Message *receive(bool non_blocking=false) override {
if (this->state->enabled) {
this->recv_called->set();
this->recv_ready->wait();
this->recv_ready->clear();
}
return TSubSocket::receive(non_blocking);
}
};
class FakePoller: public Poller {
private:
std::vector<SubSocket*> sockets;
public:
void registerSocket(SubSocket *socket) override;
std::vector<SubSocket*> poll(int timeout) override;
~FakePoller() {}
};

View File

@@ -0,0 +1,215 @@
#include <cassert>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <csignal>
#include <cerrno>
#include "cereal/services.h"
#include "cereal/messaging/impl_msgq.h"
volatile sig_atomic_t msgq_do_exit = 0;
void sig_handler(int signal) {
assert(signal == SIGINT || signal == SIGTERM);
msgq_do_exit = 1;
}
static bool service_exists(std::string path){
return services.count(path) > 0;
}
MSGQContext::MSGQContext() {
}
MSGQContext::~MSGQContext() {
}
void MSGQMessage::init(size_t sz) {
size = sz;
data = new char[size];
}
void MSGQMessage::init(char * d, size_t sz) {
size = sz;
data = new char[size];
memcpy(data, d, size);
}
void MSGQMessage::takeOwnership(char * d, size_t sz) {
size = sz;
data = d;
}
void MSGQMessage::close() {
if (size > 0){
delete[] data;
}
size = 0;
}
MSGQMessage::~MSGQMessage() {
this->close();
}
int MSGQSubSocket::connect(Context *context, std::string endpoint, std::string address, bool conflate, bool check_endpoint){
assert(context);
assert(address == "127.0.0.1");
if (check_endpoint && !service_exists(std::string(endpoint))){
std::cout << "Warning, " << std::string(endpoint) << " is not in service list." << std::endl;
}
q = new msgq_queue_t;
int r = msgq_new_queue(q, endpoint.c_str(), DEFAULT_SEGMENT_SIZE);
if (r != 0){
return r;
}
msgq_init_subscriber(q);
if (conflate){
q->read_conflate = true;
}
timeout = -1;
return 0;
}
Message * MSGQSubSocket::receive(bool non_blocking){
msgq_do_exit = 0;
void (*prev_handler_sigint)(int);
void (*prev_handler_sigterm)(int);
if (!non_blocking){
prev_handler_sigint = std::signal(SIGINT, sig_handler);
prev_handler_sigterm = std::signal(SIGTERM, sig_handler);
}
msgq_msg_t msg;
MSGQMessage *r = NULL;
int rc = msgq_msg_recv(&msg, q);
// Hack to implement blocking read with a poller. Don't use this
while (!non_blocking && rc == 0 && msgq_do_exit == 0){
msgq_pollitem_t items[1];
items[0].q = q;
int t = (timeout != -1) ? timeout : 100;
int n = msgq_poll(items, 1, t);
rc = msgq_msg_recv(&msg, q);
// The poll indicated a message was ready, but the receive failed. Try again
if (n == 1 && rc == 0){
continue;
}
if (timeout != -1){
break;
}
}
if (!non_blocking){
std::signal(SIGINT, prev_handler_sigint);
std::signal(SIGTERM, prev_handler_sigterm);
}
errno = msgq_do_exit ? EINTR : 0;
if (rc > 0){
if (msgq_do_exit){
msgq_msg_close(&msg); // Free unused message on exit
} else {
r = new MSGQMessage;
r->takeOwnership(msg.data, msg.size);
}
}
return (Message*)r;
}
void MSGQSubSocket::setTimeout(int t){
timeout = t;
}
MSGQSubSocket::~MSGQSubSocket(){
if (q != NULL){
msgq_close_queue(q);
delete q;
}
}
int MSGQPubSocket::connect(Context *context, std::string endpoint, bool check_endpoint){
assert(context);
if (check_endpoint && !service_exists(std::string(endpoint))){
std::cout << "Warning, " << std::string(endpoint) << " is not in service list." << std::endl;
}
q = new msgq_queue_t;
int r = msgq_new_queue(q, endpoint.c_str(), DEFAULT_SEGMENT_SIZE);
if (r != 0){
return r;
}
msgq_init_publisher(q);
return 0;
}
int MSGQPubSocket::sendMessage(Message *message){
msgq_msg_t msg;
msg.data = message->getData();
msg.size = message->getSize();
return msgq_msg_send(&msg, q);
}
int MSGQPubSocket::send(char *data, size_t size){
msgq_msg_t msg;
msg.data = data;
msg.size = size;
return msgq_msg_send(&msg, q);
}
bool MSGQPubSocket::all_readers_updated() {
return msgq_all_readers_updated(q);
}
MSGQPubSocket::~MSGQPubSocket(){
if (q != NULL){
msgq_close_queue(q);
delete q;
}
}
void MSGQPoller::registerSocket(SubSocket * socket){
assert(num_polls + 1 < MAX_POLLERS);
polls[num_polls].q = (msgq_queue_t*)socket->getRawSocket();
sockets.push_back(socket);
num_polls++;
}
std::vector<SubSocket*> MSGQPoller::poll(int timeout){
std::vector<SubSocket*> r;
msgq_poll(polls, num_polls, timeout);
for (size_t i = 0; i < num_polls; i++){
if (polls[i].revents){
r.push_back(sockets[i]);
}
}
return r;
}

View File

@@ -0,0 +1,67 @@
#pragma once
#include <string>
#include <vector>
#include "cereal/messaging/messaging.h"
#include "cereal/messaging/msgq.h"
#define MAX_POLLERS 128
class MSGQContext : public Context {
private:
void * context = NULL;
public:
MSGQContext();
void * getRawContext() {return context;}
~MSGQContext();
};
class MSGQMessage : public Message {
private:
char * data;
size_t size;
public:
void init(size_t size);
void init(char *data, size_t size);
void takeOwnership(char *data, size_t size);
size_t getSize(){return size;}
char * getData(){return data;}
void close();
~MSGQMessage();
};
class MSGQSubSocket : public SubSocket {
private:
msgq_queue_t * q = NULL;
int timeout;
public:
int connect(Context *context, std::string endpoint, std::string address, bool conflate=false, bool check_endpoint=true);
void setTimeout(int timeout);
void * getRawSocket() {return (void*)q;}
Message *receive(bool non_blocking=false);
~MSGQSubSocket();
};
class MSGQPubSocket : public PubSocket {
private:
msgq_queue_t * q = NULL;
public:
int connect(Context *context, std::string endpoint, bool check_endpoint=true);
int sendMessage(Message *message);
int send(char *data, size_t size);
bool all_readers_updated();
~MSGQPubSocket();
};
class MSGQPoller : public Poller {
private:
std::vector<SubSocket*> sockets;
msgq_pollitem_t polls[MAX_POLLERS];
size_t num_polls = 0;
public:
void registerSocket(SubSocket *socket);
std::vector<SubSocket*> poll(int timeout);
~MSGQPoller(){}
};

View File

@@ -0,0 +1,162 @@
#include <cassert>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cerrno>
#include <unistd.h>
#include "cereal/services.h"
#include "cereal/messaging/impl_zmq.h"
static int get_port(std::string endpoint) {
return services.at(endpoint).port;
}
ZMQContext::ZMQContext() {
context = zmq_ctx_new();
}
ZMQContext::~ZMQContext() {
zmq_ctx_term(context);
}
void ZMQMessage::init(size_t sz) {
size = sz;
data = new char[size];
}
void ZMQMessage::init(char * d, size_t sz) {
size = sz;
data = new char[size];
memcpy(data, d, size);
}
void ZMQMessage::close() {
if (size > 0){
delete[] data;
}
size = 0;
}
ZMQMessage::~ZMQMessage() {
this->close();
}
int ZMQSubSocket::connect(Context *context, std::string endpoint, std::string address, bool conflate, bool check_endpoint){
sock = zmq_socket(context->getRawContext(), ZMQ_SUB);
if (sock == NULL){
return -1;
}
zmq_setsockopt(sock, ZMQ_SUBSCRIBE, "", 0);
if (conflate){
int arg = 1;
zmq_setsockopt(sock, ZMQ_CONFLATE, &arg, sizeof(int));
}
int reconnect_ivl = 500;
zmq_setsockopt(sock, ZMQ_RECONNECT_IVL_MAX, &reconnect_ivl, sizeof(reconnect_ivl));
full_endpoint = "tcp://" + address + ":";
if (check_endpoint){
full_endpoint += std::to_string(get_port(endpoint));
} else {
full_endpoint += endpoint;
}
return zmq_connect(sock, full_endpoint.c_str());
}
Message * ZMQSubSocket::receive(bool non_blocking){
zmq_msg_t msg;
assert(zmq_msg_init(&msg) == 0);
int flags = non_blocking ? ZMQ_DONTWAIT : 0;
int rc = zmq_msg_recv(&msg, sock, flags);
Message *r = NULL;
if (rc >= 0){
// Make a copy to ensure the data is aligned
r = new ZMQMessage;
r->init((char*)zmq_msg_data(&msg), zmq_msg_size(&msg));
}
zmq_msg_close(&msg);
return r;
}
void ZMQSubSocket::setTimeout(int timeout){
zmq_setsockopt(sock, ZMQ_RCVTIMEO, &timeout, sizeof(int));
}
ZMQSubSocket::~ZMQSubSocket(){
zmq_close(sock);
}
int ZMQPubSocket::connect(Context *context, std::string endpoint, bool check_endpoint){
sock = zmq_socket(context->getRawContext(), ZMQ_PUB);
if (sock == NULL){
return -1;
}
full_endpoint = "tcp://*:";
if (check_endpoint){
full_endpoint += std::to_string(get_port(endpoint));
} else {
full_endpoint += endpoint;
}
// ZMQ pub sockets cannot be shared between processes, so we need to ensure pid stays the same
pid = getpid();
return zmq_bind(sock, full_endpoint.c_str());
}
int ZMQPubSocket::sendMessage(Message *message) {
assert(pid == getpid());
return zmq_send(sock, message->getData(), message->getSize(), ZMQ_DONTWAIT);
}
int ZMQPubSocket::send(char *data, size_t size) {
assert(pid == getpid());
return zmq_send(sock, data, size, ZMQ_DONTWAIT);
}
bool ZMQPubSocket::all_readers_updated() {
assert(false); // TODO not implemented
return false;
}
ZMQPubSocket::~ZMQPubSocket(){
zmq_close(sock);
}
void ZMQPoller::registerSocket(SubSocket * socket){
assert(num_polls + 1 < MAX_POLLERS);
polls[num_polls].socket = socket->getRawSocket();
polls[num_polls].events = ZMQ_POLLIN;
sockets.push_back(socket);
num_polls++;
}
std::vector<SubSocket*> ZMQPoller::poll(int timeout){
std::vector<SubSocket*> r;
int rc = zmq_poll(polls, num_polls, timeout);
if (rc < 0){
return r;
}
for (size_t i = 0; i < num_polls; i++){
if (polls[i].revents){
r.push_back(sockets[i]);
}
}
return r;
}

View File

@@ -0,0 +1,68 @@
#pragma once
#include <zmq.h>
#include <string>
#include <vector>
#include "cereal/messaging/messaging.h"
#define MAX_POLLERS 128
class ZMQContext : public Context {
private:
void * context = NULL;
public:
ZMQContext();
void * getRawContext() {return context;}
~ZMQContext();
};
class ZMQMessage : public Message {
private:
char * data;
size_t size;
public:
void init(size_t size);
void init(char *data, size_t size);
size_t getSize(){return size;}
char * getData(){return data;}
void close();
~ZMQMessage();
};
class ZMQSubSocket : public SubSocket {
private:
void * sock;
std::string full_endpoint;
public:
int connect(Context *context, std::string endpoint, std::string address, bool conflate=false, bool check_endpoint=true);
void setTimeout(int timeout);
void * getRawSocket() {return sock;}
Message *receive(bool non_blocking=false);
~ZMQSubSocket();
};
class ZMQPubSocket : public PubSocket {
private:
void * sock;
std::string full_endpoint;
int pid = -1;
public:
int connect(Context *context, std::string endpoint, bool check_endpoint=true);
int sendMessage(Message *message);
int send(char *data, size_t size);
bool all_readers_updated();
~ZMQPubSocket();
};
class ZMQPoller : public Poller {
private:
std::vector<SubSocket*> sockets;
zmq_pollitem_t polls[MAX_POLLERS];
size_t num_polls = 0;
public:
void registerSocket(SubSocket *socket);
std::vector<SubSocket*> poll(int timeout);
~ZMQPoller(){}
};

View File

@@ -0,0 +1,120 @@
#include <cassert>
#include <iostream>
#include "cereal/messaging/messaging.h"
#include "cereal/messaging/impl_zmq.h"
#include "cereal/messaging/impl_msgq.h"
#include "cereal/messaging/impl_fake.h"
#ifdef __APPLE__
const bool MUST_USE_ZMQ = true;
#else
const bool MUST_USE_ZMQ = false;
#endif
bool messaging_use_zmq(){
if (std::getenv("ZMQ") || MUST_USE_ZMQ) {
if (std::getenv("OPENPILOT_PREFIX")) {
std::cerr << "OPENPILOT_PREFIX not supported with ZMQ backend\n";
assert(false);
}
return true;
}
return false;
}
bool messaging_use_fake(){
char* fake_enabled = std::getenv("CEREAL_FAKE");
return fake_enabled != NULL;
}
Context * Context::create(){
Context * c;
if (messaging_use_zmq()){
c = new ZMQContext();
} else {
c = new MSGQContext();
}
return c;
}
SubSocket * SubSocket::create(){
SubSocket * s;
if (messaging_use_fake()) {
if (messaging_use_zmq()) {
s = new FakeSubSocket<ZMQSubSocket>();
} else {
s = new FakeSubSocket<MSGQSubSocket>();
}
} else {
if (messaging_use_zmq()){
s = new ZMQSubSocket();
} else {
s = new MSGQSubSocket();
}
}
return s;
}
SubSocket * SubSocket::create(Context * context, std::string endpoint, std::string address, bool conflate, bool check_endpoint){
SubSocket *s = SubSocket::create();
int r = s->connect(context, endpoint, address, conflate, check_endpoint);
if (r == 0) {
return s;
} else {
std::cerr << "Error, failed to connect SubSocket to " << endpoint << ": " << strerror(errno) << std::endl;
delete s;
return nullptr;
}
}
PubSocket * PubSocket::create(){
PubSocket * s;
if (messaging_use_zmq()){
s = new ZMQPubSocket();
} else {
s = new MSGQPubSocket();
}
return s;
}
PubSocket * PubSocket::create(Context * context, std::string endpoint, bool check_endpoint){
PubSocket *s = PubSocket::create();
int r = s->connect(context, endpoint, check_endpoint);
if (r == 0) {
return s;
} else {
std::cerr << "Error, failed to bind PubSocket to " << endpoint << ": " << strerror(errno) << std::endl;
delete s;
return nullptr;
}
}
Poller * Poller::create(){
Poller * p;
if (messaging_use_fake()) {
p = new FakePoller();
} else {
if (messaging_use_zmq()){
p = new ZMQPoller();
} else {
p = new MSGQPoller();
}
}
return p;
}
Poller * Poller::create(std::vector<SubSocket*> sockets){
Poller * p = Poller::create();
for (auto s : sockets){
p->registerSocket(s);
}
return p;
}

View File

@@ -0,0 +1,162 @@
#pragma once
#include <cstddef>
#include <map>
#include <string>
#include <vector>
#include <utility>
#include <time.h>
#include <capnp/serialize.h>
#include "cereal/gen/cpp/log.capnp.h"
#ifdef __APPLE__
#define CLOCK_BOOTTIME CLOCK_MONOTONIC
#endif
#define MSG_MULTIPLE_PUBLISHERS 100
bool messaging_use_zmq();
class Context {
public:
virtual void * getRawContext() = 0;
static Context * create();
virtual ~Context(){}
};
class Message {
public:
virtual void init(size_t size) = 0;
virtual void init(char * data, size_t size) = 0;
virtual void close() = 0;
virtual size_t getSize() = 0;
virtual char * getData() = 0;
virtual ~Message(){}
};
class SubSocket {
public:
virtual int connect(Context *context, std::string endpoint, std::string address, bool conflate=false, bool check_endpoint=true) = 0;
virtual void setTimeout(int timeout) = 0;
virtual Message *receive(bool non_blocking=false) = 0;
virtual void * getRawSocket() = 0;
static SubSocket * create();
static SubSocket * create(Context * context, std::string endpoint, std::string address="127.0.0.1", bool conflate=false, bool check_endpoint=true);
virtual ~SubSocket(){}
};
class PubSocket {
public:
virtual int connect(Context *context, std::string endpoint, bool check_endpoint=true) = 0;
virtual int sendMessage(Message *message) = 0;
virtual int send(char *data, size_t size) = 0;
virtual bool all_readers_updated() = 0;
static PubSocket * create();
static PubSocket * create(Context * context, std::string endpoint, bool check_endpoint=true);
static PubSocket * create(Context * context, std::string endpoint, int port, bool check_endpoint=true);
virtual ~PubSocket(){}
};
class Poller {
public:
virtual void registerSocket(SubSocket *socket) = 0;
virtual std::vector<SubSocket*> poll(int timeout) = 0;
static Poller * create();
static Poller * create(std::vector<SubSocket*> sockets);
virtual ~Poller(){}
};
class SubMaster {
public:
SubMaster(const std::vector<const char *> &service_list, const std::vector<const char *> &poll = {},
const char *address = nullptr, const std::vector<const char *> &ignore_alive = {});
void update(int timeout = 1000);
void update_msgs(uint64_t current_time, const std::vector<std::pair<std::string, cereal::Event::Reader>> &messages);
inline bool allAlive(const std::vector<const char *> &service_list = {}) { return all_(service_list, false, true); }
inline bool allValid(const std::vector<const char *> &service_list = {}) { return all_(service_list, true, false); }
inline bool allAliveAndValid(const std::vector<const char *> &service_list = {}) { return all_(service_list, true, true); }
void drain();
~SubMaster();
uint64_t frame = 0;
bool updated(const char *name) const;
bool alive(const char *name) const;
bool valid(const char *name) const;
uint64_t rcv_frame(const char *name) const;
uint64_t rcv_time(const char *name) const;
cereal::Event::Reader &operator[](const char *name) const;
private:
bool all_(const std::vector<const char *> &service_list, bool valid, bool alive);
Poller *poller_ = nullptr;
struct SubMessage;
std::map<SubSocket *, SubMessage *> messages_;
std::map<std::string, SubMessage *> services_;
};
class MessageBuilder : public capnp::MallocMessageBuilder {
public:
MessageBuilder() = default;
cereal::Event::Builder initEvent(bool valid = true) {
cereal::Event::Builder event = initRoot<cereal::Event>();
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
uint64_t current_time = t.tv_sec * 1000000000ULL + t.tv_nsec;
event.setLogMonoTime(current_time);
event.setValid(valid);
return event;
}
kj::ArrayPtr<capnp::byte> toBytes() {
heapArray_ = capnp::messageToFlatArray(*this);
return heapArray_.asBytes();
}
size_t getSerializedSize() {
return capnp::computeSerializedSizeInWords(*this) * sizeof(capnp::word);
}
int serializeToBuffer(unsigned char *buffer, size_t buffer_size) {
size_t serialized_size = getSerializedSize();
if (serialized_size > buffer_size) { return -1; }
kj::ArrayOutputStream out(kj::ArrayPtr<capnp::byte>(buffer, buffer_size));
capnp::writeMessage(out, *this);
return serialized_size;
}
private:
kj::Array<capnp::word> heapArray_;
};
class PubMaster {
public:
PubMaster(const std::vector<const char *> &service_list);
inline int send(const char *name, capnp::byte *data, size_t size) { return sockets_.at(name)->send((char *)data, size); }
int send(const char *name, MessageBuilder &msg);
~PubMaster();
private:
std::map<std::string, PubSocket *> sockets_;
};
class AlignedBuffer {
public:
kj::ArrayPtr<const capnp::word> align(const char *data, const size_t size) {
words_size = size / sizeof(capnp::word) + 1;
if (aligned_buf.size() < words_size) {
aligned_buf = kj::heapArray<capnp::word>(words_size < 512 ? 512 : words_size);
}
memcpy(aligned_buf.begin(), data, size);
return aligned_buf.slice(0, words_size);
}
inline kj::ArrayPtr<const capnp::word> align(Message *m) {
return align(m->getData(), m->getSize());
}
private:
kj::Array<capnp::word> aligned_buf;
size_t words_size;
};

File diff suppressed because it is too large Load Diff

Binary file not shown.

468
cereal/messaging/msgq.cc Normal file
View File

@@ -0,0 +1,468 @@
#include <iostream>
#include <cassert>
#include <cerrno>
#include <cmath>
#include <cstring>
#include <cstdint>
#include <chrono>
#include <algorithm>
#include <cstdlib>
#include <csignal>
#include <random>
#include <string>
#include <limits>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include "cereal/messaging/msgq.h"
void sigusr2_handler(int signal) {
assert(signal == SIGUSR2);
}
uint64_t msgq_get_uid(void){
std::random_device rd("/dev/urandom");
std::uniform_int_distribution<uint64_t> distribution(0, std::numeric_limits<uint32_t>::max());
#ifdef __APPLE__
// TODO: this doesn't work
uint64_t uid = distribution(rd) << 32 | getpid();
#else
uint64_t uid = distribution(rd) << 32 | syscall(SYS_gettid);
#endif
return uid;
}
int msgq_msg_init_size(msgq_msg_t * msg, size_t size){
msg->size = size;
msg->data = new(std::nothrow) char[size];
return (msg->data == NULL) ? -1 : 0;
}
int msgq_msg_init_data(msgq_msg_t * msg, char * data, size_t size) {
int r = msgq_msg_init_size(msg, size);
if (r == 0)
memcpy(msg->data, data, size);
return r;
}
int msgq_msg_close(msgq_msg_t * msg){
if (msg->size > 0)
delete[] msg->data;
msg->size = 0;
return 0;
}
void msgq_reset_reader(msgq_queue_t * q){
int id = q->reader_id;
q->read_valids[id]->store(true);
q->read_pointers[id]->store(*q->write_pointer);
}
void msgq_wait_for_subscriber(msgq_queue_t *q){
while (*q->num_readers == 0){
// wait for subscriber
}
return;
}
int msgq_new_queue(msgq_queue_t * q, const char * path, size_t size){
assert(size < 0xFFFFFFFF); // Buffer must be smaller than 2^32 bytes
std::signal(SIGUSR2, sigusr2_handler);
std::string full_path = "/dev/shm/";
const char* prefix = std::getenv("OPENPILOT_PREFIX");
if (prefix) {
full_path += std::string(prefix) + "/";
}
full_path += path;
auto fd = open(full_path.c_str(), O_RDWR | O_CREAT, 0664);
if (fd < 0) {
std::cout << "Warning, could not open: " << full_path << std::endl;
return -1;
}
int rc = ftruncate(fd, size + sizeof(msgq_header_t));
if (rc < 0){
close(fd);
return -1;
}
char * mem = (char*)mmap(NULL, size + sizeof(msgq_header_t), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
if (mem == NULL){
return -1;
}
q->mmap_p = mem;
msgq_header_t *header = (msgq_header_t *)mem;
// Setup pointers to header segment
q->num_readers = reinterpret_cast<std::atomic<uint64_t>*>(&header->num_readers);
q->write_pointer = reinterpret_cast<std::atomic<uint64_t>*>(&header->write_pointer);
q->write_uid = reinterpret_cast<std::atomic<uint64_t>*>(&header->write_uid);
for (size_t i = 0; i < NUM_READERS; i++){
q->read_pointers[i] = reinterpret_cast<std::atomic<uint64_t>*>(&header->read_pointers[i]);
q->read_valids[i] = reinterpret_cast<std::atomic<uint64_t>*>(&header->read_valids[i]);
q->read_uids[i] = reinterpret_cast<std::atomic<uint64_t>*>(&header->read_uids[i]);
}
q->data = mem + sizeof(msgq_header_t);
q->size = size;
q->reader_id = -1;
q->endpoint = path;
q->read_conflate = false;
return 0;
}
void msgq_close_queue(msgq_queue_t *q){
if (q->mmap_p != NULL){
munmap(q->mmap_p, q->size + sizeof(msgq_header_t));
}
}
void msgq_init_publisher(msgq_queue_t * q) {
//std::cout << "Starting publisher" << std::endl;
uint64_t uid = msgq_get_uid();
*q->write_uid = uid;
*q->num_readers = 0;
for (size_t i = 0; i < NUM_READERS; i++){
*q->read_valids[i] = false;
*q->read_uids[i] = 0;
}
q->write_uid_local = uid;
}
static void thread_signal(uint32_t tid) {
#ifndef SYS_tkill
// TODO: this won't work for multithreaded programs
kill(tid, SIGUSR2);
#else
syscall(SYS_tkill, tid, SIGUSR2);
#endif
}
void msgq_init_subscriber(msgq_queue_t * q) {
assert(q != NULL);
assert(q->num_readers != NULL);
uint64_t uid = msgq_get_uid();
// Get reader id
while (true){
uint64_t cur_num_readers = *q->num_readers;
uint64_t new_num_readers = cur_num_readers + 1;
// No more slots available. Reset all subscribers to kick out inactive ones
if (new_num_readers > NUM_READERS){
//std::cout << "Warning, evicting all subscribers!" << std::endl;
*q->num_readers = 0;
for (size_t i = 0; i < NUM_READERS; i++){
*q->read_valids[i] = false;
uint64_t old_uid = *q->read_uids[i];
*q->read_uids[i] = 0;
// Wake up reader in case they are in a poll
thread_signal(old_uid & 0xFFFFFFFF);
}
continue;
}
// Use atomic compare and swap to handle race condition
// where two subscribers start at the same time
if (std::atomic_compare_exchange_strong(q->num_readers,
&cur_num_readers,
new_num_readers)){
q->reader_id = cur_num_readers;
q->read_uid_local = uid;
// We start with read_valid = false,
// on the first read the read pointer will be synchronized with the write pointer
*q->read_valids[cur_num_readers] = false;
*q->read_pointers[cur_num_readers] = 0;
*q->read_uids[cur_num_readers] = uid;
break;
}
}
//std::cout << "New subscriber id: " << q->reader_id << " uid: " << q->read_uid_local << " " << q->endpoint << std::endl;
msgq_reset_reader(q);
}
int msgq_msg_send(msgq_msg_t * msg, msgq_queue_t *q){
// Die if we are no longer the active publisher
if (q->write_uid_local != *q->write_uid){
std::cout << "Killing old publisher: " << q->endpoint << std::endl;
errno = EADDRINUSE;
return -1;
}
uint64_t total_msg_size = ALIGN(msg->size + sizeof(int64_t));
// We need to fit at least three messages in the queue,
// then we can always safely access the last message
assert(3 * total_msg_size <= q->size);
uint64_t num_readers = *q->num_readers;
uint32_t write_cycles, write_pointer;
UNPACK64(write_cycles, write_pointer, *q->write_pointer);
char *p = q->data + write_pointer; // add base offset
// Check remaining space
// Always leave space for a wraparound tag for the next message, including alignment
int64_t remaining_space = q->size - write_pointer - total_msg_size - sizeof(int64_t);
if (remaining_space <= 0){
// Write -1 size tag indicating wraparound
*(int64_t*)p = -1;
// Invalidate all readers that are beyond the write pointer
// TODO: should we handle the case where a new reader shows up while this is running?
for (uint64_t i = 0; i < num_readers; i++){
uint64_t read_pointer = *q->read_pointers[i];
uint64_t read_cycles = read_pointer >> 32;
read_pointer &= 0xFFFFFFFF;
if ((read_pointer > write_pointer) && (read_cycles != write_cycles)) {
*q->read_valids[i] = false;
}
}
// Update global and local copies of write pointer and write_cycles
write_pointer = 0;
write_cycles = write_cycles + 1;
PACK64(*q->write_pointer, write_cycles, write_pointer);
// Set actual pointer to the beginning of the data segment
p = q->data;
}
// Invalidate readers that are in the area that will be written
uint64_t start = write_pointer;
uint64_t end = ALIGN(start + sizeof(int64_t) + msg->size);
for (uint64_t i = 0; i < num_readers; i++){
uint32_t read_cycles, read_pointer;
UNPACK64(read_cycles, read_pointer, *q->read_pointers[i]);
if ((read_pointer >= start) && (read_pointer < end) && (read_cycles != write_cycles)) {
*q->read_valids[i] = false;
}
}
// Write size tag
std::atomic<int64_t> *size_p = reinterpret_cast<std::atomic<int64_t>*>(p);
*size_p = msg->size;
// Copy data
memcpy(p + sizeof(int64_t), msg->data, msg->size);
__sync_synchronize();
// Update write pointer
uint32_t new_ptr = ALIGN(write_pointer + msg->size + sizeof(int64_t));
PACK64(*q->write_pointer, write_cycles, new_ptr);
// Notify readers
for (uint64_t i = 0; i < num_readers; i++){
uint64_t reader_uid = *q->read_uids[i];
thread_signal(reader_uid & 0xFFFFFFFF);
}
return msg->size;
}
int msgq_msg_ready(msgq_queue_t * q){
start:
int id = q->reader_id;
assert(id >= 0); // Make sure subscriber is initialized
if (q->read_uid_local != *q->read_uids[id]){
//std::cout << q->endpoint << ": Reader was evicted, reconnecting" << std::endl;
msgq_init_subscriber(q);
goto start;
}
// Check valid
if (!*q->read_valids[id]){
msgq_reset_reader(q);
goto start;
}
uint32_t read_cycles, read_pointer;
UNPACK64(read_cycles, read_pointer, *q->read_pointers[id]);
UNUSED(read_cycles);
uint32_t write_cycles, write_pointer;
UNPACK64(write_cycles, write_pointer, *q->write_pointer);
UNUSED(write_cycles);
// Check if new message is available
return (read_pointer != write_pointer);
}
int msgq_msg_recv(msgq_msg_t * msg, msgq_queue_t * q){
start:
int id = q->reader_id;
assert(id >= 0); // Make sure subscriber is initialized
if (q->read_uid_local != *q->read_uids[id]){
//std::cout << q->endpoint << ": Reader was evicted, reconnecting" << std::endl;
msgq_init_subscriber(q);
goto start;
}
// Check valid
if (!*q->read_valids[id]){
msgq_reset_reader(q);
goto start;
}
uint32_t read_cycles, read_pointer;
UNPACK64(read_cycles, read_pointer, *q->read_pointers[id]);
uint32_t write_cycles, write_pointer;
UNPACK64(write_cycles, write_pointer, *q->write_pointer);
UNUSED(write_cycles);
char * p = q->data + read_pointer;
// Check if new message is available
if (read_pointer == write_pointer) {
msg->size = 0;
return 0;
}
// Read potential message size
std::atomic<int64_t> *size_p = reinterpret_cast<std::atomic<int64_t>*>(p);
std::int64_t size = *size_p;
// Check if the size that was read is valid
if (!*q->read_valids[id]){
msgq_reset_reader(q);
goto start;
}
// If size is -1 the buffer was full, and we need to wrap around
if (size == -1){
read_cycles++;
PACK64(*q->read_pointers[id], read_cycles, 0);
goto start;
}
// crashing is better than passing garbage data to the consumer
// the size will have weird value if it was overwritten by data accidentally
assert((uint64_t)size < q->size);
assert(size > 0);
uint32_t new_read_pointer = ALIGN(read_pointer + sizeof(std::int64_t) + size);
// If conflate is true, check if this is the latest message, else start over
if (q->read_conflate){
if (new_read_pointer != write_pointer){
// Update read pointer
PACK64(*q->read_pointers[id], read_cycles, new_read_pointer);
goto start;
}
}
// Copy message
if (msgq_msg_init_size(msg, size) < 0)
return -1;
__sync_synchronize();
memcpy(msg->data, p + sizeof(int64_t), size);
__sync_synchronize();
// Update read pointer
PACK64(*q->read_pointers[id], read_cycles, new_read_pointer);
// Check if the actual data that was copied is valid
if (!*q->read_valids[id]){
msgq_msg_close(msg);
msgq_reset_reader(q);
goto start;
}
return msg->size;
}
int msgq_poll(msgq_pollitem_t * items, size_t nitems, int timeout){
int num = 0;
// Check if messages ready
for (size_t i = 0; i < nitems; i++) {
items[i].revents = msgq_msg_ready(items[i].q);
if (items[i].revents) num++;
}
int ms = (timeout == -1) ? 100 : timeout;
struct timespec ts;
ts.tv_sec = ms / 1000;
ts.tv_nsec = (ms % 1000) * 1000 * 1000;
while (num == 0) {
int ret;
ret = nanosleep(&ts, &ts);
// Check if messages ready
for (size_t i = 0; i < nitems; i++) {
if (items[i].revents == 0 && msgq_msg_ready(items[i].q)){
num += 1;
items[i].revents = 1;
}
}
// exit if we had a timeout and the sleep finished
if (timeout != -1 && ret == 0){
break;
}
}
return num;
}
bool msgq_all_readers_updated(msgq_queue_t *q) {
uint64_t num_readers = *q->num_readers;
for (uint64_t i = 0; i < num_readers; i++) {
if (*q->read_valids[i] && *q->write_pointer != *q->read_pointers[i]) {
return false;
}
}
return num_readers > 0;
}

70
cereal/messaging/msgq.h Normal file
View File

@@ -0,0 +1,70 @@
#pragma once
#include <cstdint>
#include <cstring>
#include <string>
#include <atomic>
#define DEFAULT_SEGMENT_SIZE (10 * 1024 * 1024)
#define NUM_READERS 12
#define ALIGN(n) ((n + (8 - 1)) & -8)
#define UNUSED(x) (void)x
#define UNPACK64(higher, lower, input) do {uint64_t tmp = input; higher = tmp >> 32; lower = tmp & 0xFFFFFFFF;} while (0)
#define PACK64(output, higher, lower) output = ((uint64_t)higher << 32) | ((uint64_t)lower & 0xFFFFFFFF)
struct msgq_header_t {
uint64_t num_readers;
uint64_t write_pointer;
uint64_t write_uid;
uint64_t read_pointers[NUM_READERS];
uint64_t read_valids[NUM_READERS];
uint64_t read_uids[NUM_READERS];
};
struct msgq_queue_t {
std::atomic<uint64_t> *num_readers;
std::atomic<uint64_t> *write_pointer;
std::atomic<uint64_t> *write_uid;
std::atomic<uint64_t> *read_pointers[NUM_READERS];
std::atomic<uint64_t> *read_valids[NUM_READERS];
std::atomic<uint64_t> *read_uids[NUM_READERS];
char * mmap_p;
char * data;
size_t size;
int reader_id;
uint64_t read_uid_local;
uint64_t write_uid_local;
bool read_conflate;
std::string endpoint;
};
struct msgq_msg_t {
size_t size;
char * data;
};
struct msgq_pollitem_t {
msgq_queue_t *q;
int revents;
};
void msgq_wait_for_subscriber(msgq_queue_t *q);
void msgq_reset_reader(msgq_queue_t *q);
int msgq_msg_init_size(msgq_msg_t *msg, size_t size);
int msgq_msg_init_data(msgq_msg_t *msg, char * data, size_t size);
int msgq_msg_close(msgq_msg_t *msg);
int msgq_new_queue(msgq_queue_t * q, const char * path, size_t size);
void msgq_close_queue(msgq_queue_t *q);
void msgq_init_publisher(msgq_queue_t * q);
void msgq_init_subscriber(msgq_queue_t * q);
int msgq_msg_send(msgq_msg_t *msg, msgq_queue_t *q);
int msgq_msg_recv(msgq_msg_t *msg, msgq_queue_t *q);
int msgq_msg_ready(msgq_queue_t * q);
int msgq_poll(msgq_pollitem_t * items, size_t nitems, int timeout);
bool msgq_all_readers_updated(msgq_queue_t *q);

54
cereal/messaging/msgq.md Normal file
View File

@@ -0,0 +1,54 @@
# MSGQ: A lock free single producer multi consumer message queue
## What is MSGQ?
MSGQ is a system to pass messages from a single producer to multiple consumers. All the consumers need to be able to receive all the messages. It is designed to be a high performance replacement for ZMQ-like SUB/PUB patterns. It uses a ring buffer in shared memory to efficiently read and write data. Each read requires a copy. Writing can be done without a copy, as long as the size of the data is known in advance.
## Storage
The storage for the queue consists of an area of metadata, and the actual buffer. The metadata contains:
1. A counter to the number of readers that are active
2. A pointer to the head of the queue for writing. From now on referred to as *write pointer*
3. A cycle counter for the writer. This counter is incremented when the writer wraps around
4. N pointers, pointing to the current read position for all the readers. From now on referred to as *read pointer*
5. N counters, counting the number of cycles for all the readers
6. N booleans, indicating validity for all the readers. From now on referred to as *validity flag*
The counter and the pointer are both 32 bit values, packed into 64 bit so they can be read and written atomically.
The data buffer is a ring buffer. All messages are prefixed by an 8 byte size field, followed by the data. A size of -1 indicates a wrap-around, and means the next message is stored at the beginning of the buffer.
## Writing
Writing involves the following steps:
1. Check if the area that is to be written overlaps with any of the read pointers, mark those readers as invalid by clearing the validity flag.
2. Write the message
3. Increase the write pointer by the size of the message
In case there is not enough space at the end of the buffer, a special empty message with a prefix of -1 is written. The cycle counter is incremented by one. In this case step 1 will check there are no read pointers pointing to the remainder of the buffer. Then another write cycle will start with the actual message.
There always needs to be 8 bytes of empty space at the end of the buffer. By doing this there is always space to write the -1.
## Reset reader
When the reader is lagging too much behind the read pointer becomes invalid and no longer points to the beginning of a valid message. To reset a reader to the current write pointer, the following steps are performed:
1. Set valid flag
2. Set read cycle counter to that of the writer
3. Set read pointer to write pointer
## Reading
Reading involves the following steps:
1. Read the size field at the current read pointer
2. Read the validity flag
3. Copy the data out of the buffer
4. Increase the read pointer by the size of the message
5. Check the validity flag again
Before starting the copy, the valid flag is checked. This is to prevent a race condition where the size prefix was invalid, and the read could read outside of the buffer. Make sure that step 1 and 2 are not reordered by your compiler or CPU.
If a writer overwrites the data while it's being copied out, the data will be invalid. Therefore the validity flag is also checked after reading it. The order of step 4 and 5 does not matter.
If at steps 2 or 5 the validity flag is not set, the reader is reset. Any data that was already read is discarded. After the reader is reset, the reading starts from the beginning.
If a message with size -1 is encountered, step 3 and 4 are replaced by increasing the cycle counter and setting the read pointer to the beginning of the buffer. After that another read is performed.

View File

@@ -0,0 +1,394 @@
#include "catch2/catch.hpp"
#include "cereal/messaging/msgq.h"
TEST_CASE("ALIGN"){
REQUIRE(ALIGN(0) == 0);
REQUIRE(ALIGN(1) == 8);
REQUIRE(ALIGN(7) == 8);
REQUIRE(ALIGN(8) == 8);
REQUIRE(ALIGN(99999) == 100000);
}
TEST_CASE("msgq_msg_init_size"){
const size_t msg_size = 30;
msgq_msg_t msg;
msgq_msg_init_size(&msg, msg_size);
REQUIRE(msg.size == msg_size);
msgq_msg_close(&msg);
}
TEST_CASE("msgq_msg_init_data"){
const size_t msg_size = 30;
char * data = new char[msg_size];
for (size_t i = 0; i < msg_size; i++){
data[i] = i;
}
msgq_msg_t msg;
msgq_msg_init_data(&msg, data, msg_size);
REQUIRE(msg.size == msg_size);
REQUIRE(memcmp(msg.data, data, msg_size) == 0);
delete[] data;
msgq_msg_close(&msg);
}
TEST_CASE("msgq_init_subscriber"){
remove("/dev/shm/test_queue");
msgq_queue_t q;
msgq_new_queue(&q, "test_queue", 1024);
REQUIRE(*q.num_readers == 0);
q.reader_id = 1;
*q.read_valids[0] = false;
*q.read_pointers[0] = ((uint64_t)1 << 32);
*q.write_pointer = 255;
msgq_init_subscriber(&q);
REQUIRE(q.read_conflate == false);
REQUIRE(*q.read_valids[0] == true);
REQUIRE((*q.read_pointers[0] >> 32) == 0);
REQUIRE((*q.read_pointers[0] & 0xFFFFFFFF) == 255);
}
TEST_CASE("msgq_msg_send first message"){
remove("/dev/shm/test_queue");
msgq_queue_t q;
msgq_new_queue(&q, "test_queue", 1024);
msgq_init_publisher(&q);
REQUIRE(*q.write_pointer == 0);
size_t msg_size = 128;
SECTION("Aligned message size"){
}
SECTION("Unaligned message size"){
msg_size--;
}
char * data = new char[msg_size];
for (size_t i = 0; i < msg_size; i++){
data[i] = i;
}
msgq_msg_t msg;
msgq_msg_init_data(&msg, data, msg_size);
msgq_msg_send(&msg, &q);
REQUIRE(*(int64_t*)q.data == msg_size); // Check size tag
REQUIRE(*q.write_pointer == 128 + sizeof(int64_t));
REQUIRE(memcmp(q.data + sizeof(int64_t), data, msg_size) == 0);
delete[] data;
msgq_msg_close(&msg);
}
TEST_CASE("msgq_msg_send test wraparound"){
remove("/dev/shm/test_queue");
msgq_queue_t q;
msgq_new_queue(&q, "test_queue", 1024);
msgq_init_publisher(&q);
REQUIRE((*q.write_pointer & 0xFFFFFFFF) == 0);
REQUIRE((*q.write_pointer >> 32) == 0);
const size_t msg_size = 120;
msgq_msg_t msg;
msgq_msg_init_size(&msg, msg_size);
for (int i = 0; i < 8; i++) {
msgq_msg_send(&msg, &q);
}
// Check 8th message was written at the beginning
REQUIRE((*q.write_pointer & 0xFFFFFFFF) == msg_size + sizeof(int64_t));
// Check cycle count
REQUIRE((*q.write_pointer >> 32) == 1);
// Check wraparound tag
char * tag_location = q.data;
tag_location += 7 * (msg_size + sizeof(int64_t));
REQUIRE(*(int64_t*)tag_location == -1);
msgq_msg_close(&msg);
}
TEST_CASE("msgq_msg_recv test wraparound"){
remove("/dev/shm/test_queue");
msgq_queue_t q_pub, q_sub;
msgq_new_queue(&q_pub, "test_queue", 1024);
msgq_new_queue(&q_sub, "test_queue", 1024);
msgq_init_publisher(&q_pub);
msgq_init_subscriber(&q_sub);
REQUIRE((*q_pub.write_pointer >> 32) == 0);
REQUIRE((*q_sub.read_pointers[0] >> 32) == 0);
const size_t msg_size = 120;
msgq_msg_t msg1;
msgq_msg_init_size(&msg1, msg_size);
SECTION("Check cycle counter after reset") {
for (int i = 0; i < 8; i++) {
msgq_msg_send(&msg1, &q_pub);
}
msgq_msg_t msg2;
msgq_msg_recv(&msg2, &q_sub);
REQUIRE(msg2.size == 0); // Reader had to reset
msgq_msg_close(&msg2);
}
SECTION("Check cycle counter while keeping up with writer") {
for (int i = 0; i < 8; i++) {
msgq_msg_send(&msg1, &q_pub);
msgq_msg_t msg2;
msgq_msg_recv(&msg2, &q_sub);
REQUIRE(msg2.size > 0);
msgq_msg_close(&msg2);
}
}
REQUIRE((*q_sub.read_pointers[0] >> 32) == 1);
msgq_msg_close(&msg1);
}
TEST_CASE("msgq_msg_send test invalidation"){
remove("/dev/shm/test_queue");
msgq_queue_t q_pub, q_sub;
msgq_new_queue(&q_pub, "test_queue", 1024);
msgq_new_queue(&q_sub, "test_queue", 1024);
msgq_init_publisher(&q_pub);
msgq_init_subscriber(&q_sub);
*q_sub.write_pointer = (uint64_t)1 << 32;
REQUIRE(*q_sub.read_valids[0] == true);
SECTION("read pointer in tag"){
*q_sub.read_pointers[0] = 0;
}
SECTION("read pointer in data section"){
*q_sub.read_pointers[0] = 64;
}
SECTION("read pointer in wraparound section"){
*q_pub.write_pointer = ((uint64_t)1 << 32) | 1000; // Writer is one cycle ahead
*q_sub.read_pointers[0] = 1020;
}
msgq_msg_t msg;
msgq_msg_init_size(&msg, 128);
msgq_msg_send(&msg, &q_pub);
REQUIRE(*q_sub.read_valids[0] == false);
msgq_msg_close(&msg);
}
TEST_CASE("msgq_init_subscriber init 2 subscribers"){
remove("/dev/shm/test_queue");
msgq_queue_t q1, q2;
msgq_new_queue(&q1, "test_queue", 1024);
msgq_new_queue(&q2, "test_queue", 1024);
*q1.num_readers = 0;
REQUIRE(*q1.num_readers == 0);
REQUIRE(*q2.num_readers == 0);
msgq_init_subscriber(&q1);
REQUIRE(*q1.num_readers == 1);
REQUIRE(*q2.num_readers == 1);
REQUIRE(q1.reader_id == 0);
msgq_init_subscriber(&q2);
REQUIRE(*q1.num_readers == 2);
REQUIRE(*q2.num_readers == 2);
REQUIRE(q2.reader_id == 1);
}
TEST_CASE("Write 1 msg, read 1 msg", "[integration]"){
remove("/dev/shm/test_queue");
const size_t msg_size = 128;
msgq_queue_t writer, reader;
msgq_new_queue(&writer, "test_queue", 1024);
msgq_new_queue(&reader, "test_queue", 1024);
msgq_init_publisher(&writer);
msgq_init_subscriber(&reader);
// Build 128 byte message
msgq_msg_t outgoing_msg;
msgq_msg_init_size(&outgoing_msg, msg_size);
for (size_t i = 0; i < msg_size; i++){
outgoing_msg.data[i] = i;
}
REQUIRE(msgq_msg_send(&outgoing_msg, &writer) == msg_size);
msgq_msg_t incoming_msg1;
REQUIRE(msgq_msg_recv(&incoming_msg1, &reader) == msg_size);
REQUIRE(memcmp(incoming_msg1.data, outgoing_msg.data, msg_size) == 0);
// Verify that there are no more messages
msgq_msg_t incoming_msg2;
REQUIRE(msgq_msg_recv(&incoming_msg2, &reader) == 0);
msgq_msg_close(&outgoing_msg);
msgq_msg_close(&incoming_msg1);
msgq_msg_close(&incoming_msg2);
}
TEST_CASE("Write 2 msg, read 2 msg - conflate = false", "[integration]"){
remove("/dev/shm/test_queue");
const size_t msg_size = 128;
msgq_queue_t writer, reader;
msgq_new_queue(&writer, "test_queue", 1024);
msgq_new_queue(&reader, "test_queue", 1024);
msgq_init_publisher(&writer);
msgq_init_subscriber(&reader);
// Build 128 byte message
msgq_msg_t outgoing_msg;
msgq_msg_init_size(&outgoing_msg, msg_size);
for (size_t i = 0; i < msg_size; i++){
outgoing_msg.data[i] = i;
}
REQUIRE(msgq_msg_send(&outgoing_msg, &writer) == msg_size);
REQUIRE(msgq_msg_send(&outgoing_msg, &writer) == msg_size);
msgq_msg_t incoming_msg1;
REQUIRE(msgq_msg_recv(&incoming_msg1, &reader) == msg_size);
REQUIRE(memcmp(incoming_msg1.data, outgoing_msg.data, msg_size) == 0);
msgq_msg_t incoming_msg2;
REQUIRE(msgq_msg_recv(&incoming_msg2, &reader) == msg_size);
REQUIRE(memcmp(incoming_msg2.data, outgoing_msg.data, msg_size) == 0);
msgq_msg_close(&outgoing_msg);
msgq_msg_close(&incoming_msg1);
msgq_msg_close(&incoming_msg2);
}
TEST_CASE("Write 2 msg, read 2 msg - conflate = true", "[integration]"){
remove("/dev/shm/test_queue");
const size_t msg_size = 128;
msgq_queue_t writer, reader;
msgq_new_queue(&writer, "test_queue", 1024);
msgq_new_queue(&reader, "test_queue", 1024);
msgq_init_publisher(&writer);
msgq_init_subscriber(&reader);
reader.read_conflate = true;
// Build 128 byte message
msgq_msg_t outgoing_msg;
msgq_msg_init_size(&outgoing_msg, msg_size);
for (size_t i = 0; i < msg_size; i++){
outgoing_msg.data[i] = i;
}
REQUIRE(msgq_msg_send(&outgoing_msg, &writer) == msg_size);
REQUIRE(msgq_msg_send(&outgoing_msg, &writer) == msg_size);
msgq_msg_t incoming_msg1;
REQUIRE(msgq_msg_recv(&incoming_msg1, &reader) == msg_size);
REQUIRE(memcmp(incoming_msg1.data, outgoing_msg.data, msg_size) == 0);
// Verify that there are no more messages
msgq_msg_t incoming_msg2;
REQUIRE(msgq_msg_recv(&incoming_msg2, &reader) == 0);
msgq_msg_close(&outgoing_msg);
msgq_msg_close(&incoming_msg1);
msgq_msg_close(&incoming_msg2);
}
TEST_CASE("1 publisher, 1 slow subscriber", "[integration]"){
remove("/dev/shm/test_queue");
msgq_queue_t writer, reader;
msgq_new_queue(&writer, "test_queue", 1024);
msgq_new_queue(&reader, "test_queue", 1024);
msgq_init_publisher(&writer);
msgq_init_subscriber(&reader);
int n_received = 0;
int n_skipped = 0;
for (uint64_t i = 0; i < 1e5; i++) {
msgq_msg_t outgoing_msg;
msgq_msg_init_data(&outgoing_msg, (char*)&i, sizeof(uint64_t));
msgq_msg_send(&outgoing_msg, &writer);
msgq_msg_close(&outgoing_msg);
if (i % 10 == 0){
msgq_msg_t msg1;
msgq_msg_recv(&msg1, &reader);
if (msg1.size == 0){
n_skipped++;
} else {
n_received++;
}
msgq_msg_close(&msg1);
}
}
// TODO: verify these numbers by hand
REQUIRE(n_received == 8572);
REQUIRE(n_skipped == 1428);
}
TEST_CASE("1 publisher, 2 subscribers", "[integration]"){
remove("/dev/shm/test_queue");
msgq_queue_t writer, reader1, reader2;
msgq_new_queue(&writer, "test_queue", 1024);
msgq_new_queue(&reader1, "test_queue", 1024);
msgq_new_queue(&reader2, "test_queue", 1024);
msgq_init_publisher(&writer);
msgq_init_subscriber(&reader1);
msgq_init_subscriber(&reader2);
for (uint64_t i = 0; i < 1024 * 3; i++) {
msgq_msg_t outgoing_msg;
msgq_msg_init_data(&outgoing_msg, (char*)&i, sizeof(uint64_t));
msgq_msg_send(&outgoing_msg, &writer);
msgq_msg_t msg1, msg2;
msgq_msg_recv(&msg1, &reader1);
msgq_msg_recv(&msg2, &reader2);
REQUIRE(msg1.size == sizeof(uint64_t));
REQUIRE(msg2.size == sizeof(uint64_t));
REQUIRE(*(uint64_t*)msg1.data == i);
REQUIRE(*(uint64_t*)msg2.data == i);
msgq_msg_close(&outgoing_msg);
msgq_msg_close(&msg1);
msgq_msg_close(&msg2);
}
}

View File

@@ -0,0 +1,210 @@
#include <time.h>
#include <assert.h>
#include <stdlib.h>
#include <string>
#include <mutex>
#include "cereal/services.h"
#include "cereal/messaging/messaging.h"
const bool SIMULATION = (getenv("SIMULATION") != nullptr) && (std::string(getenv("SIMULATION")) == "1");
static inline uint64_t nanos_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000000000ULL + t.tv_nsec;
}
static inline bool inList(const std::vector<const char *> &list, const char *value) {
for (auto &v : list) {
if (strcmp(value, v) == 0) return true;
}
return false;
}
class MessageContext {
public:
MessageContext() : ctx_(nullptr) {}
~MessageContext() { delete ctx_; }
inline Context *context() {
std::call_once(init_flag, [=]() { ctx_ = Context::create(); });
return ctx_;
}
private:
Context *ctx_;
std::once_flag init_flag;
};
MessageContext message_context;
struct SubMaster::SubMessage {
std::string name;
SubSocket *socket = nullptr;
int freq = 0;
bool updated = false, alive = false, valid = true, ignore_alive;
uint64_t rcv_time = 0, rcv_frame = 0;
void *allocated_msg_reader = nullptr;
bool is_polled = false;
capnp::FlatArrayMessageReader *msg_reader = nullptr;
AlignedBuffer aligned_buf;
cereal::Event::Reader event;
};
SubMaster::SubMaster(const std::vector<const char *> &service_list, const std::vector<const char *> &poll,
const char *address, const std::vector<const char *> &ignore_alive) {
poller_ = Poller::create();
for (auto name : service_list) {
assert(services.count(std::string(name)) > 0);
service serv = services.at(std::string(name));
SubSocket *socket = SubSocket::create(message_context.context(), name, address ? address : "127.0.0.1", true);
assert(socket != 0);
bool is_polled = inList(poll, name) || poll.empty();
if (is_polled) poller_->registerSocket(socket);
SubMessage *m = new SubMessage{
.name = name,
.socket = socket,
.freq = serv.frequency,
.ignore_alive = inList(ignore_alive, name),
.allocated_msg_reader = malloc(sizeof(capnp::FlatArrayMessageReader)),
.is_polled = is_polled};
m->msg_reader = new (m->allocated_msg_reader) capnp::FlatArrayMessageReader({});
messages_[socket] = m;
services_[name] = m;
}
}
void SubMaster::update(int timeout) {
for (auto &kv : messages_) kv.second->updated = false;
auto sockets = poller_->poll(timeout);
// add non-polled sockets for non-blocking receive
for (auto &kv : messages_) {
SubMessage *m = kv.second;
SubSocket *s = kv.first;
if (!m->is_polled) sockets.push_back(s);
}
uint64_t current_time = nanos_since_boot();
std::vector<std::pair<std::string, cereal::Event::Reader>> messages;
for (auto s : sockets) {
Message *msg = s->receive(true);
if (msg == nullptr) continue;
SubMessage *m = messages_.at(s);
m->msg_reader->~FlatArrayMessageReader();
capnp::ReaderOptions options;
options.traversalLimitInWords = kj::maxValue; // Don't limit
m->msg_reader = new (m->allocated_msg_reader) capnp::FlatArrayMessageReader(m->aligned_buf.align(msg), options);
delete msg;
messages.push_back({m->name, m->msg_reader->getRoot<cereal::Event>()});
}
update_msgs(current_time, messages);
}
void SubMaster::update_msgs(uint64_t current_time, const std::vector<std::pair<std::string, cereal::Event::Reader>> &messages){
if (++frame == UINT64_MAX) frame = 1;
for (auto &kv : messages) {
auto m_find = services_.find(kv.first);
if (m_find == services_.end()){
continue;
}
SubMessage *m = m_find->second;
m->event = kv.second;
m->updated = true;
m->rcv_time = current_time;
m->rcv_frame = frame;
m->valid = m->event.getValid();
if (SIMULATION) m->alive = true;
}
if (!SIMULATION) {
for (auto &kv : messages_) {
SubMessage *m = kv.second;
m->alive = (m->freq <= (1e-5) || ((current_time - m->rcv_time) * (1e-9)) < (10.0 / m->freq));
}
}
}
bool SubMaster::all_(const std::vector<const char *> &service_list, bool valid, bool alive) {
int found = 0;
for (auto &kv : messages_) {
SubMessage *m = kv.second;
if (service_list.size() == 0 || inList(service_list, m->name.c_str())) {
found += (!valid || m->valid) && (!alive || (m->alive || m->ignore_alive));
}
}
return service_list.size() == 0 ? found == messages_.size() : found == service_list.size();
}
void SubMaster::drain() {
while (true) {
auto polls = poller_->poll(0);
if (polls.size() == 0)
break;
for (auto sock : polls) {
Message *msg = sock->receive(true);
delete msg;
}
}
}
bool SubMaster::updated(const char *name) const {
return services_.at(name)->updated;
}
bool SubMaster::alive(const char *name) const {
return services_.at(name)->alive;
}
bool SubMaster::valid(const char *name) const {
return services_.at(name)->valid;
}
uint64_t SubMaster::rcv_frame(const char *name) const {
return services_.at(name)->rcv_frame;
}
uint64_t SubMaster::rcv_time(const char *name) const {
return services_.at(name)->rcv_time;
}
cereal::Event::Reader &SubMaster::operator[](const char *name) const {
return services_.at(name)->event;
}
SubMaster::~SubMaster() {
delete poller_;
for (auto &kv : messages_) {
SubMessage *m = kv.second;
m->msg_reader->~FlatArrayMessageReader();
free(m->allocated_msg_reader);
delete m->socket;
delete m;
}
}
PubMaster::PubMaster(const std::vector<const char *> &service_list) {
for (auto name : service_list) {
assert(services.count(name) > 0);
PubSocket *socket = PubSocket::create(message_context.context(), name);
assert(socket);
sockets_[name] = socket;
}
}
int PubMaster::send(const char *name, MessageBuilder &msg) {
auto bytes = msg.toBytes();
return send(name, bytes.begin(), bytes.size());
}
PubMaster::~PubMaster() {
for (auto s : sockets_) delete s.second;
}

View File

@@ -0,0 +1,14 @@
from messaging_pyx import Context, SubSocket, PubSocket
if __name__ == "__main__":
c = Context()
pub_sock = PubSocket()
pub_sock.connect(c, "controlsState")
for i in range(int(1e10)):
print(i)
sub_sock = SubSocket()
sub_sock.connect(c, "controlsState")
pub_sock.send(b'a')
print(sub_sock.receive())

View File

@@ -0,0 +1,2 @@
#define CATCH_CONFIG_MAIN
#include "catch2/catch.hpp"

View File

View File

@@ -0,0 +1,193 @@
import os
import unittest
import multiprocessing
import platform
from parameterized import parameterized_class
from typing import Optional
import cereal.messaging as messaging
WAIT_TIMEOUT = 5
@unittest.skipIf(platform.system() == "Darwin", "Events not supported on macOS")
class TestEvents(unittest.TestCase):
def test_mutation(self):
handle = messaging.fake_event_handle("carState")
event = handle.recv_called_event
self.assertFalse(event.peek())
event.set()
self.assertTrue(event.peek())
event.clear()
self.assertFalse(event.peek())
del event
def test_wait(self):
handle = messaging.fake_event_handle("carState")
event = handle.recv_called_event
event.set()
try:
event.wait(WAIT_TIMEOUT)
self.assertTrue(event.peek())
except RuntimeError:
self.fail("event.wait() timed out")
def test_wait_multiprocess(self):
handle = messaging.fake_event_handle("carState")
event = handle.recv_called_event
def set_event_run():
event.set()
try:
p = multiprocessing.Process(target=set_event_run)
p.start()
event.wait(WAIT_TIMEOUT)
self.assertTrue(event.peek())
except RuntimeError:
self.fail("event.wait() timed out")
p.kill()
def test_wait_zero_timeout(self):
handle = messaging.fake_event_handle("carState")
event = handle.recv_called_event
try:
event.wait(0)
self.fail("event.wait() did not time out")
except RuntimeError:
self.assertFalse(event.peek())
@unittest.skipIf(platform.system() == "Darwin", "FakeSockets not supported on macOS")
@unittest.skipIf("ZMQ" in os.environ, "FakeSockets not supported on ZMQ")
@parameterized_class([{"prefix": None}, {"prefix": "test"}])
class TestFakeSockets(unittest.TestCase):
prefix: Optional[str] = None
def setUp(self):
messaging.toggle_fake_events(True)
if self.prefix is not None:
messaging.set_fake_prefix(self.prefix)
else:
messaging.delete_fake_prefix()
def tearDown(self):
messaging.toggle_fake_events(False)
messaging.delete_fake_prefix()
def test_event_handle_init(self):
handle = messaging.fake_event_handle("controlsState", override=True)
self.assertFalse(handle.enabled)
self.assertGreaterEqual(handle.recv_called_event.fd, 0)
self.assertGreaterEqual(handle.recv_ready_event.fd, 0)
def test_non_managed_socket_state(self):
# non managed socket should have zero state
_ = messaging.pub_sock("ubloxGnss")
handle = messaging.fake_event_handle("ubloxGnss", override=False)
self.assertFalse(handle.enabled)
self.assertEqual(handle.recv_called_event.fd, 0)
self.assertEqual(handle.recv_ready_event.fd, 0)
def test_managed_socket_state(self):
# managed socket should not change anything about the state
handle = messaging.fake_event_handle("ubloxGnss")
handle.enabled = True
expected_enabled = handle.enabled
expected_recv_called_fd = handle.recv_called_event.fd
expected_recv_ready_fd = handle.recv_ready_event.fd
_ = messaging.pub_sock("ubloxGnss")
self.assertEqual(handle.enabled, expected_enabled)
self.assertEqual(handle.recv_called_event.fd, expected_recv_called_fd)
self.assertEqual(handle.recv_ready_event.fd, expected_recv_ready_fd)
def test_sockets_enable_disable(self):
carState_handle = messaging.fake_event_handle("ubloxGnss", enable=True)
recv_called = carState_handle.recv_called_event
recv_ready = carState_handle.recv_ready_event
pub_sock = messaging.pub_sock("ubloxGnss")
sub_sock = messaging.sub_sock("ubloxGnss")
try:
carState_handle.enabled = True
recv_ready.set()
pub_sock.send(b"test")
_ = sub_sock.receive()
self.assertTrue(recv_called.peek())
recv_called.clear()
carState_handle.enabled = False
recv_ready.set()
pub_sock.send(b"test")
_ = sub_sock.receive()
self.assertFalse(recv_called.peek())
except RuntimeError:
self.fail("event.wait() timed out")
def test_synced_pub_sub(self):
def daemon_repub_process_run():
pub_sock = messaging.pub_sock("ubloxGnss")
sub_sock = messaging.sub_sock("carState")
frame = -1
while True:
frame += 1
msg = sub_sock.receive(non_blocking=True)
if msg is None:
print("none received")
continue
bts = frame.to_bytes(8, 'little')
pub_sock.send(bts)
carState_handle = messaging.fake_event_handle("carState", enable=True)
recv_called = carState_handle.recv_called_event
recv_ready = carState_handle.recv_ready_event
p = multiprocessing.Process(target=daemon_repub_process_run)
p.start()
pub_sock = messaging.pub_sock("carState")
sub_sock = messaging.sub_sock("ubloxGnss")
try:
for i in range(10):
recv_called.wait(WAIT_TIMEOUT)
recv_called.clear()
if i == 0:
sub_sock.receive(non_blocking=True)
bts = i.to_bytes(8, 'little')
pub_sock.send(bts)
recv_ready.set()
recv_called.wait(WAIT_TIMEOUT)
msg = sub_sock.receive(non_blocking=True)
self.assertIsNotNone(msg)
self.assertEqual(len(msg), 8)
frame = int.from_bytes(msg, 'little')
self.assertEqual(frame, i)
except RuntimeError:
self.fail("event.wait() timed out")
finally:
p.kill()
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,242 @@
#!/usr/bin/env python3
import os
import capnp
import multiprocessing
import numbers
import random
import threading
import time
import unittest
from parameterized import parameterized
from cereal import log, car
import cereal.messaging as messaging
from cereal.services import SERVICE_LIST
events = [evt for evt in log.Event.schema.union_fields if evt in SERVICE_LIST.keys()]
def random_sock():
return random.choice(events)
def random_socks(num_socks=10):
return list({random_sock() for _ in range(num_socks)})
def random_bytes(length=1000):
return bytes([random.randrange(0xFF) for _ in range(length)])
def zmq_sleep(t=1):
if "ZMQ" in os.environ:
time.sleep(t)
def zmq_expected_failure(func):
if "ZMQ" in os.environ:
return unittest.expectedFailure(func)
else:
return func
# TODO: this should take any capnp struct and returrn a msg with random populated data
def random_carstate():
fields = ["vEgo", "aEgo", "gas", "steeringAngleDeg"]
msg = messaging.new_message("carState")
cs = msg.carState
for f in fields:
setattr(cs, f, random.random() * 10)
return msg
# TODO: this should compare any capnp structs
def assert_carstate(cs1, cs2):
for f in car.CarState.schema.non_union_fields:
# TODO: check all types
val1, val2 = getattr(cs1, f), getattr(cs2, f)
if isinstance(val1, numbers.Number):
assert val1 == val2, f"{f}: sent '{val1}' vs recvd '{val2}'"
def delayed_send(delay, sock, dat):
def send_func():
sock.send(dat)
threading.Timer(delay, send_func).start()
class TestPubSubSockets(unittest.TestCase):
def setUp(self):
# ZMQ pub socket takes too long to die
# sleep to prevent multiple publishers error between tests
zmq_sleep()
def test_pub_sub(self):
sock = random_sock()
pub_sock = messaging.pub_sock(sock)
sub_sock = messaging.sub_sock(sock, conflate=False, timeout=None)
zmq_sleep(3)
for _ in range(1000):
msg = random_bytes()
pub_sock.send(msg)
recvd = sub_sock.receive()
self.assertEqual(msg, recvd)
def test_conflate(self):
sock = random_sock()
pub_sock = messaging.pub_sock(sock)
for conflate in [True, False]:
for _ in range(10):
num_msgs = random.randint(3, 10)
sub_sock = messaging.sub_sock(sock, conflate=conflate, timeout=None)
zmq_sleep()
sent_msgs = []
for __ in range(num_msgs):
msg = random_bytes()
pub_sock.send(msg)
sent_msgs.append(msg)
time.sleep(0.1)
recvd_msgs = messaging.drain_sock_raw(sub_sock)
if conflate:
self.assertEqual(len(recvd_msgs), 1)
else:
# TODO: compare actual data
self.assertEqual(len(recvd_msgs), len(sent_msgs))
def test_receive_timeout(self):
sock = random_sock()
for _ in range(10):
timeout = random.randrange(200)
sub_sock = messaging.sub_sock(sock, timeout=timeout)
zmq_sleep()
start_time = time.monotonic()
recvd = sub_sock.receive()
self.assertLess(time.monotonic() - start_time, 0.2)
assert recvd is None
class TestMessaging(unittest.TestCase):
def setUp(self):
# ZMQ pub socket takes too long to die
# sleep to prevent multiple publishers error between tests
zmq_sleep()
@parameterized.expand(events)
def test_new_message(self, evt):
try:
msg = messaging.new_message(evt)
except capnp.lib.capnp.KjException:
msg = messaging.new_message(evt, random.randrange(200))
self.assertLess(time.monotonic() - msg.logMonoTime, 0.1)
self.assertFalse(msg.valid)
self.assertEqual(evt, msg.which())
@parameterized.expand(events)
def test_pub_sock(self, evt):
messaging.pub_sock(evt)
@parameterized.expand(events)
def test_sub_sock(self, evt):
messaging.sub_sock(evt)
@parameterized.expand([
(messaging.drain_sock, capnp._DynamicStructReader),
(messaging.drain_sock_raw, bytes),
])
def test_drain_sock(self, func, expected_type):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sub_sock = messaging.sub_sock(sock, timeout=1000)
zmq_sleep()
# no wait and no msgs in queue
msgs = func(sub_sock)
self.assertIsInstance(msgs, list)
self.assertEqual(len(msgs), 0)
# no wait but msgs are queued up
num_msgs = random.randrange(3, 10)
for _ in range(num_msgs):
pub_sock.send(messaging.new_message(sock).to_bytes())
time.sleep(0.1)
msgs = func(sub_sock)
self.assertIsInstance(msgs, list)
self.assertTrue(all(isinstance(msg, expected_type) for msg in msgs))
self.assertEqual(len(msgs), num_msgs)
def test_recv_sock(self):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sub_sock = messaging.sub_sock(sock, timeout=100)
zmq_sleep()
# no wait and no msg in queue, socket should timeout
recvd = messaging.recv_sock(sub_sock)
self.assertTrue(recvd is None)
# no wait and one msg in queue
msg = random_carstate()
pub_sock.send(msg.to_bytes())
time.sleep(0.01)
recvd = messaging.recv_sock(sub_sock)
self.assertIsInstance(recvd, capnp._DynamicStructReader)
# https://github.com/python/mypy/issues/13038
assert_carstate(msg.carState, recvd.carState) # type: ignore[union-attr]
def test_recv_one(self):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sub_sock = messaging.sub_sock(sock, timeout=1000)
zmq_sleep()
# no msg in queue, socket should timeout
recvd = messaging.recv_one(sub_sock)
self.assertTrue(recvd is None)
# one msg in queue
msg = random_carstate()
pub_sock.send(msg.to_bytes())
recvd = messaging.recv_one(sub_sock)
self.assertIsInstance(recvd, capnp._DynamicStructReader)
assert_carstate(msg.carState, recvd.carState) # type: ignore[union-attr]
@zmq_expected_failure
def test_recv_one_or_none(self):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sub_sock = messaging.sub_sock(sock)
zmq_sleep()
# no msg in queue, socket shouldn't block
recvd = messaging.recv_one_or_none(sub_sock)
self.assertTrue(recvd is None)
# one msg in queue
msg = random_carstate()
pub_sock.send(msg.to_bytes())
recvd = messaging.recv_one_or_none(sub_sock)
self.assertIsInstance(recvd, capnp._DynamicStructReader)
assert_carstate(msg.carState, recvd.carState) # type: ignore[union-attr]
def test_recv_one_retry(self):
sock = "carState"
sock_timeout = 0.1
pub_sock = messaging.pub_sock(sock)
sub_sock = messaging.sub_sock(sock, timeout=round(sock_timeout*1000))
zmq_sleep()
# this test doesn't work with ZMQ since multiprocessing interrupts it
if "ZMQ" not in os.environ:
# wait 15 socket timeouts and make sure it's still retrying
p = multiprocessing.Process(target=messaging.recv_one_retry, args=(sub_sock,))
p.start()
time.sleep(sock_timeout*15)
self.assertTrue(p.is_alive())
p.terminate()
# wait 15 socket timeouts before sending
msg = random_carstate()
delayed_send(sock_timeout*15, pub_sock, msg.to_bytes())
start_time = time.monotonic()
recvd = messaging.recv_one_retry(sub_sock)
self.assertGreaterEqual(time.monotonic() - start_time, sock_timeout*15)
self.assertIsInstance(recvd, capnp._DynamicStructReader)
assert_carstate(msg.carState, recvd.carState)
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,142 @@
import unittest
import time
import cereal.messaging as messaging
import concurrent.futures
def poller():
context = messaging.Context()
p = messaging.Poller()
sub = messaging.SubSocket()
sub.connect(context, 'controlsState')
p.registerSocket(sub)
socks = p.poll(10000)
r = [s.receive(non_blocking=True) for s in socks]
return r
class TestPoller(unittest.TestCase):
def test_poll_once(self):
context = messaging.Context()
pub = messaging.PubSocket()
pub.connect(context, 'controlsState')
with concurrent.futures.ThreadPoolExecutor() as e:
poll = e.submit(poller)
time.sleep(0.1) # Slow joiner syndrome
# Send message
pub.send(b"a")
# Wait for poll result
result = poll.result()
del pub
context.term()
self.assertEqual(result, [b"a"])
def test_poll_and_create_many_subscribers(self):
context = messaging.Context()
pub = messaging.PubSocket()
pub.connect(context, 'controlsState')
with concurrent.futures.ThreadPoolExecutor() as e:
poll = e.submit(poller)
time.sleep(0.1) # Slow joiner syndrome
c = messaging.Context()
for _ in range(10):
messaging.SubSocket().connect(c, 'controlsState')
time.sleep(0.1)
# Send message
pub.send(b"a")
# Wait for poll result
result = poll.result()
del pub
context.term()
self.assertEqual(result, [b"a"])
def test_multiple_publishers_exception(self):
context = messaging.Context()
with self.assertRaises(messaging.MultiplePublishersError):
pub1 = messaging.PubSocket()
pub1.connect(context, 'controlsState')
pub2 = messaging.PubSocket()
pub2.connect(context, 'controlsState')
pub1.send(b"a")
del pub1
del pub2
context.term()
def test_multiple_messages(self):
context = messaging.Context()
pub = messaging.PubSocket()
pub.connect(context, 'controlsState')
sub = messaging.SubSocket()
sub.connect(context, 'controlsState')
time.sleep(0.1) # Slow joiner
for i in range(1, 100):
pub.send(b'a'*i)
msg_seen = False
i = 1
while True:
r = sub.receive(non_blocking=True)
if r is not None:
self.assertEqual(b'a'*i, r)
msg_seen = True
i += 1
if r is None and msg_seen: # ZMQ sometimes receives nothing on the first receive
break
del pub
del sub
context.term()
def test_conflate(self):
context = messaging.Context()
pub = messaging.PubSocket()
pub.connect(context, 'controlsState')
sub = messaging.SubSocket()
sub.connect(context, 'controlsState', conflate=True)
time.sleep(0.1) # Slow joiner
pub.send(b'a')
pub.send(b'b')
self.assertEqual(b'b', sub.receive())
del pub
del sub
context.term()
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,163 @@
#!/usr/bin/env python3
import random
import time
from typing import Sized, cast
import unittest
import cereal.messaging as messaging
from cereal.messaging.tests.test_messaging import events, random_sock, random_socks, \
random_bytes, random_carstate, assert_carstate, \
zmq_sleep
class TestSubMaster(unittest.TestCase):
def setUp(self):
# ZMQ pub socket takes too long to die
# sleep to prevent multiple publishers error between tests
zmq_sleep(3)
def test_init(self):
sm = messaging.SubMaster(events)
for p in [sm.updated, sm.recv_time, sm.recv_frame, sm.alive,
sm.sock, sm.data, sm.logMonoTime, sm.valid]:
self.assertEqual(len(cast(Sized, p)), len(events))
def test_init_state(self):
socks = random_socks()
sm = messaging.SubMaster(socks)
self.assertEqual(sm.frame, -1)
self.assertFalse(any(sm.updated.values()))
self.assertFalse(any(sm.alive.values()))
self.assertTrue(all(t == 0. for t in sm.recv_time.values()))
self.assertTrue(all(f == 0 for f in sm.recv_frame.values()))
self.assertTrue(all(t == 0 for t in sm.logMonoTime.values()))
for p in [sm.updated, sm.recv_time, sm.recv_frame, sm.alive,
sm.sock, sm.data, sm.logMonoTime, sm.valid]:
self.assertEqual(len(cast(Sized, p)), len(socks))
def test_getitem(self):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sm = messaging.SubMaster([sock,])
zmq_sleep()
msg = random_carstate()
pub_sock.send(msg.to_bytes())
sm.update(1000)
assert_carstate(msg.carState, sm[sock])
# TODO: break this test up to individually test SubMaster.update and SubMaster.update_msgs
def test_update(self):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sm = messaging.SubMaster([sock,])
zmq_sleep()
for i in range(10):
msg = messaging.new_message(sock)
pub_sock.send(msg.to_bytes())
sm.update(1000)
self.assertEqual(sm.frame, i)
self.assertTrue(all(sm.updated.values()))
def test_update_timeout(self):
sock = random_sock()
sm = messaging.SubMaster([sock,])
for _ in range(5):
timeout = random.randrange(1000, 5000)
start_time = time.monotonic()
sm.update(timeout)
t = time.monotonic() - start_time
self.assertGreaterEqual(t, timeout/1000.)
self.assertLess(t, 5)
self.assertFalse(any(sm.updated.values()))
def test_avg_frequency_checks(self):
for poll in (True, False):
sm = messaging.SubMaster(["modelV2", "carParams", "carState", "cameraOdometry", "liveCalibration"],
poll=("modelV2" if poll else None),
frequency=(20. if not poll else None))
checks = {
"carState": (20, 20),
"modelV2": (20, 20 if poll else 10),
"cameraOdometry": (20, 10),
"liveCalibration": (4, 4),
"carParams": (None, None),
}
for service, (max_freq, min_freq) in checks.items():
if max_freq is not None:
assert sm._check_avg_freq(service)
assert sm.max_freq[service] == max_freq*1.2
assert sm.min_freq[service] == min_freq*0.8
else:
assert not sm._check_avg_freq(service)
def test_alive(self):
pass
def test_ignore_alive(self):
pass
def test_valid(self):
pass
# SubMaster should always conflate
def test_conflate(self):
sock = "carState"
pub_sock = messaging.pub_sock(sock)
sm = messaging.SubMaster([sock,])
n = 10
for i in range(n+1):
msg = messaging.new_message(sock)
msg.carState.vEgo = i
pub_sock.send(msg.to_bytes())
time.sleep(0.01)
sm.update(1000)
self.assertEqual(sm[sock].vEgo, n)
class TestPubMaster(unittest.TestCase):
def setUp(self):
# ZMQ pub socket takes too long to die
# sleep to prevent multiple publishers error between tests
zmq_sleep(3)
def test_init(self):
messaging.PubMaster(events)
def test_send(self):
socks = random_socks()
pm = messaging.PubMaster(socks)
sub_socks = {s: messaging.sub_sock(s, conflate=True, timeout=1000) for s in socks}
zmq_sleep()
# PubMaster accepts either a capnp msg builder or bytes
for capnp in [True, False]:
for i in range(100):
sock = socks[i % len(socks)]
if capnp:
try:
msg = messaging.new_message(sock)
except Exception:
msg = messaging.new_message(sock, random.randrange(50))
else:
msg = random_bytes()
pm.send(sock, msg)
recvd = sub_socks[sock].receive()
if capnp:
msg.clear_write_flag()
msg = msg.to_bytes()
self.assertEqual(msg, recvd, i)
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,33 @@
#!/usr/bin/env python3
import os
import tempfile
from typing import Dict
import unittest
from parameterized import parameterized
import cereal.services as services
from cereal.services import SERVICE_LIST, RESERVED_PORT, STARTING_PORT
class TestServices(unittest.TestCase):
@parameterized.expand(SERVICE_LIST.keys())
def test_services(self, s):
service = SERVICE_LIST[s]
self.assertTrue(service.port != RESERVED_PORT)
self.assertTrue(service.port >= STARTING_PORT)
self.assertTrue(service.frequency <= 104)
def test_no_duplicate_port(self):
ports: Dict[int, str] = {}
for name, service in SERVICE_LIST.items():
self.assertFalse(service.port in ports.keys(), f"duplicate port {service.port}")
ports[service.port] = name
def test_generated_header(self):
with tempfile.NamedTemporaryFile(suffix=".h") as f:
ret = os.system(f"python3 {services.__file__} > {f.name} && clang++ {f.name}")
self.assertEqual(ret, 0, "generated services header is not valid C")
if __name__ == "__main__":
unittest.main()