openpilot v0.9.6 release
date: 2024-02-21T23:02:42 master commit: 0b4d08fab8e35a264bc7383e878538f8083c33e5
This commit is contained in:
199
selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
Executable file
199
selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
Executable file
@@ -0,0 +1,199 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
from casadi import SX, vertcat, sin, cos
|
||||
# WARNING: imports outside of constants will not trigger a rebuild
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
|
||||
if __name__ == '__main__': # generating code
|
||||
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
|
||||
else:
|
||||
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
|
||||
|
||||
LAT_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code")
|
||||
JSON_FILE = os.path.join(LAT_MPC_DIR, "acados_ocp_lat.json")
|
||||
X_DIM = 4
|
||||
P_DIM = 2
|
||||
COST_E_DIM = 3
|
||||
COST_DIM = COST_E_DIM + 2
|
||||
SPEED_OFFSET = 10.0
|
||||
MODEL_NAME = 'lat'
|
||||
ACADOS_SOLVER_TYPE = 'SQP_RTI'
|
||||
N = 32
|
||||
|
||||
def gen_lat_model():
|
||||
model = AcadosModel()
|
||||
model.name = MODEL_NAME
|
||||
|
||||
# set up states & controls
|
||||
x_ego = SX.sym('x_ego')
|
||||
y_ego = SX.sym('y_ego')
|
||||
psi_ego = SX.sym('psi_ego')
|
||||
psi_rate_ego = SX.sym('psi_rate_ego')
|
||||
model.x = vertcat(x_ego, y_ego, psi_ego, psi_rate_ego)
|
||||
|
||||
# parameters
|
||||
v_ego = SX.sym('v_ego')
|
||||
rotation_radius = SX.sym('rotation_radius')
|
||||
model.p = vertcat(v_ego, rotation_radius)
|
||||
|
||||
# controls
|
||||
psi_accel_ego = SX.sym('psi_accel_ego')
|
||||
model.u = vertcat(psi_accel_ego)
|
||||
|
||||
# xdot
|
||||
x_ego_dot = SX.sym('x_ego_dot')
|
||||
y_ego_dot = SX.sym('y_ego_dot')
|
||||
psi_ego_dot = SX.sym('psi_ego_dot')
|
||||
psi_rate_ego_dot = SX.sym('psi_rate_ego_dot')
|
||||
|
||||
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, psi_rate_ego_dot)
|
||||
|
||||
# dynamics model
|
||||
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * psi_rate_ego,
|
||||
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * psi_rate_ego,
|
||||
psi_rate_ego,
|
||||
psi_accel_ego)
|
||||
model.f_impl_expr = model.xdot - f_expl
|
||||
model.f_expl_expr = f_expl
|
||||
return model
|
||||
|
||||
|
||||
def gen_lat_ocp():
|
||||
ocp = AcadosOcp()
|
||||
ocp.model = gen_lat_model()
|
||||
|
||||
Tf = np.array(ModelConstants.T_IDXS)[N]
|
||||
|
||||
# set dimensions
|
||||
ocp.dims.N = N
|
||||
|
||||
# set cost module
|
||||
ocp.cost.cost_type = 'NONLINEAR_LS'
|
||||
ocp.cost.cost_type_e = 'NONLINEAR_LS'
|
||||
|
||||
Q = np.diag(np.zeros(COST_E_DIM))
|
||||
QR = np.diag(np.zeros(COST_DIM))
|
||||
|
||||
ocp.cost.W = QR
|
||||
ocp.cost.W_e = Q
|
||||
|
||||
y_ego, psi_ego, psi_rate_ego = ocp.model.x[1], ocp.model.x[2], ocp.model.x[3]
|
||||
psi_rate_ego_dot = ocp.model.u[0]
|
||||
v_ego = ocp.model.p[0]
|
||||
|
||||
ocp.parameter_values = np.zeros((P_DIM, ))
|
||||
|
||||
ocp.cost.yref = np.zeros((COST_DIM, ))
|
||||
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
|
||||
# Add offset to smooth out low speed control
|
||||
# TODO unclear if this right solution long term
|
||||
v_ego_offset = v_ego + SPEED_OFFSET
|
||||
# TODO there are two costs on psi_rate_ego_dot, one
|
||||
# is correlated to jerk the other to steering wheel movement
|
||||
# the steering wheel movement cost is added to prevent excessive
|
||||
# wheel movements
|
||||
ocp.model.cost_y_expr = vertcat(y_ego,
|
||||
v_ego_offset * psi_ego,
|
||||
v_ego_offset * psi_rate_ego,
|
||||
v_ego_offset * psi_rate_ego_dot,
|
||||
psi_rate_ego_dot / (v_ego + 0.1))
|
||||
ocp.model.cost_y_expr_e = vertcat(y_ego,
|
||||
v_ego_offset * psi_ego,
|
||||
v_ego_offset * psi_rate_ego)
|
||||
|
||||
# set constraints
|
||||
ocp.constraints.constr_type = 'BGH'
|
||||
ocp.constraints.idxbx = np.array([2,3])
|
||||
ocp.constraints.ubx = np.array([np.radians(90), np.radians(50)])
|
||||
ocp.constraints.lbx = np.array([-np.radians(90), -np.radians(50)])
|
||||
x0 = np.zeros((X_DIM,))
|
||||
ocp.constraints.x0 = x0
|
||||
|
||||
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
|
||||
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
|
||||
ocp.solver_options.integrator_type = 'ERK'
|
||||
ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE
|
||||
ocp.solver_options.qp_solver_iter_max = 1
|
||||
ocp.solver_options.qp_solver_cond_N = 1
|
||||
|
||||
# set prediction horizon
|
||||
ocp.solver_options.tf = Tf
|
||||
ocp.solver_options.shooting_nodes = np.array(ModelConstants.T_IDXS)[:N+1]
|
||||
|
||||
ocp.code_export_directory = EXPORT_DIR
|
||||
return ocp
|
||||
|
||||
|
||||
class LateralMpc():
|
||||
def __init__(self, x0=None):
|
||||
if x0 is None:
|
||||
x0 = np.zeros(X_DIM)
|
||||
self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
|
||||
self.reset(x0)
|
||||
|
||||
def reset(self, x0=None):
|
||||
if x0 is None:
|
||||
x0 = np.zeros(X_DIM)
|
||||
self.x_sol = np.zeros((N+1, X_DIM))
|
||||
self.u_sol = np.zeros((N, 1))
|
||||
self.yref = np.zeros((N+1, COST_DIM))
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, "yref", self.yref[i])
|
||||
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
|
||||
|
||||
# Somehow needed for stable init
|
||||
for i in range(N+1):
|
||||
self.solver.set(i, 'x', np.zeros(X_DIM))
|
||||
self.solver.set(i, 'p', np.zeros(P_DIM))
|
||||
self.solver.constraints_set(0, "lbx", x0)
|
||||
self.solver.constraints_set(0, "ubx", x0)
|
||||
self.solver.solve()
|
||||
self.solution_status = 0
|
||||
self.solve_time = 0.0
|
||||
self.cost = 0
|
||||
|
||||
def set_weights(self, path_weight, heading_weight,
|
||||
lat_accel_weight, lat_jerk_weight,
|
||||
steering_rate_weight):
|
||||
W = np.asfortranarray(np.diag([path_weight, heading_weight,
|
||||
lat_accel_weight, lat_jerk_weight,
|
||||
steering_rate_weight]))
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, 'W', W)
|
||||
self.solver.cost_set(N, 'W', W[:COST_E_DIM,:COST_E_DIM])
|
||||
|
||||
def run(self, x0, p, y_pts, heading_pts, yaw_rate_pts):
|
||||
x0_cp = np.copy(x0)
|
||||
p_cp = np.copy(p)
|
||||
self.solver.constraints_set(0, "lbx", x0_cp)
|
||||
self.solver.constraints_set(0, "ubx", x0_cp)
|
||||
self.yref[:,0] = y_pts
|
||||
v_ego = p_cp[0, 0]
|
||||
# rotation_radius = p_cp[1]
|
||||
self.yref[:,1] = heading_pts * (v_ego + SPEED_OFFSET)
|
||||
self.yref[:,2] = yaw_rate_pts * (v_ego + SPEED_OFFSET)
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, "yref", self.yref[i])
|
||||
self.solver.set(i, "p", p_cp[i])
|
||||
self.solver.set(N, "p", p_cp[N])
|
||||
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
|
||||
|
||||
t = time.monotonic()
|
||||
self.solution_status = self.solver.solve()
|
||||
self.solve_time = time.monotonic() - t
|
||||
|
||||
for i in range(N+1):
|
||||
self.x_sol[i] = self.solver.get(i, 'x')
|
||||
for i in range(N):
|
||||
self.u_sol[i] = self.solver.get(i, 'u')
|
||||
self.cost = self.solver.get_cost()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ocp = gen_lat_ocp()
|
||||
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE)
|
||||
# AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
|
||||
Reference in New Issue
Block a user