Tweak lead detection threshold
Added toggle to tweak the lead detection threshold to either detect leads sooner, or increase model confidence.
This commit is contained in:
@@ -167,9 +167,9 @@ def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: floa
|
||||
|
||||
|
||||
def get_lead(v_ego: float, ready: bool, tracks: Dict[int, Track], lead_msg: capnp._DynamicStructReader,
|
||||
model_v_ego: float, low_speed_override: bool = True) -> Dict[str, Any]:
|
||||
model_v_ego: float, lead_detection_threshold: float = .5, low_speed_override: bool = True) -> Dict[str, Any]:
|
||||
# Determine leads, this is where the essential logic happens
|
||||
if len(tracks) > 0 and ready and lead_msg.prob > .5:
|
||||
if len(tracks) > 0 and ready and lead_msg.prob > lead_detection_threshold:
|
||||
track = match_vision_to_track(v_ego, lead_msg, tracks)
|
||||
else:
|
||||
track = None
|
||||
@@ -177,7 +177,7 @@ def get_lead(v_ego: float, ready: bool, tracks: Dict[int, Track], lead_msg: capn
|
||||
lead_dict = {'status': False}
|
||||
if track is not None:
|
||||
lead_dict = track.get_RadarState(lead_msg.prob)
|
||||
elif (track is None) and ready and (lead_msg.prob > .5):
|
||||
elif (track is None) and ready and (lead_msg.prob > lead_detection_threshold):
|
||||
lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
|
||||
|
||||
if low_speed_override:
|
||||
@@ -208,6 +208,12 @@ class RadarD:
|
||||
|
||||
self.ready = False
|
||||
|
||||
# FrogPilot variables
|
||||
self.params = Params()
|
||||
self.params_memory = Params("/dev/shm/params")
|
||||
|
||||
self.update_frogpilot_params()
|
||||
|
||||
def update(self, sm: messaging.SubMaster, rr: Optional[car.RadarData]):
|
||||
self.ready = sm.seen['modelV2']
|
||||
self.current_time = 1e-9*max(sm.logMonoTime.values())
|
||||
@@ -257,8 +263,12 @@ class RadarD:
|
||||
model_v_ego = self.v_ego
|
||||
leads_v3 = sm['modelV2'].leadsV3
|
||||
if len(leads_v3) > 1:
|
||||
self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
|
||||
self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
|
||||
self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, self.lead_detection_threshold, low_speed_override=True)
|
||||
self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, self.lead_detection_threshold, low_speed_override=False)
|
||||
|
||||
# Update FrogPilot parameters
|
||||
if self.params_memory.get_bool("FrogPilotTogglesUpdated"):
|
||||
self.update_frogpilot_params()
|
||||
|
||||
def publish(self, pm: messaging.PubMaster, lag_ms: float):
|
||||
assert self.radar_state is not None
|
||||
@@ -281,6 +291,9 @@ class RadarD:
|
||||
}
|
||||
pm.send('liveTracks', tracks_msg)
|
||||
|
||||
def update_frogpilot_params(self):
|
||||
longitudinal_tune = self.params.get_bool("LongitudinalTune")
|
||||
self.lead_detection_threshold = self.params.get_int("LeadDetectionThreshold") / 100 if longitudinal_tune else .5
|
||||
|
||||
# fuses camera and radar data for best lead detection
|
||||
def main():
|
||||
|
||||
Reference in New Issue
Block a user