Conditional Experimental Mode

Added toggles for "Conditional Experimental Mode".

Conditions based on road curvature, turn signals, speed, lead speed, navigation instructions, and stop signs/stop lights are all individually toggleable.

Co-Authored-By: eFini <16603033+efinilan@users.noreply.github.com>
Co-Authored-By: Kumar <36933347+rav4kumar@users.noreply.github.com>
This commit is contained in:
FrogAi
2024-02-28 19:46:38 -07:00
parent 89e6ebdf12
commit 50cc95341d
18 changed files with 423 additions and 8 deletions

View File

@@ -0,0 +1,191 @@
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.selfdrive.frogpilot.functions.frogpilot_functions import CITY_SPEED_LIMIT, CRUISING_SPEED, MovingAverageCalculator, PROBABILITY
# Lookup table for stop sign / stop light detection
SLOW_DOWN_BP = [0., 10., 20., 30., 40., 50., 55., 60.]
SLOW_DOWN_DISTANCE = [20, 30., 50., 70., 80., 90., 105., 120.]
TRAJECTORY_SIZE = 33
class ConditionalExperimentalMode:
def __init__(self, params_memory):
self.params_memory = params_memory
self.curve_detected = False
self.experimental_mode = False
self.lead_detected = False
self.lead_stopping = False
self.red_light_detected = False
self.slower_lead_detected = False
self.previous_status_value = 0
self.previous_v_ego = 0
self.previous_v_lead = 0
self.status_value = 0
self.curvature_mac = MovingAverageCalculator()
self.lead_detection_mac = MovingAverageCalculator()
self.lead_slowing_down_mac = MovingAverageCalculator()
self.slow_lead_mac = MovingAverageCalculator()
self.slowing_down_mac = MovingAverageCalculator()
self.stop_light_mac = MovingAverageCalculator()
def update(self, carState, enabled, frogpilotNavigation, modelData, radarState, road_curvature, stop_distance, t_follow, v_ego):
lead = radarState.leadOne
v_lead = lead.vLead
# Update Experimental Mode based on the current driving conditions
condition_met = self.check_conditions(carState, frogpilotNavigation, lead, modelData, stop_distance, v_ego)
if (not self.experimental_mode and condition_met) and enabled:
self.experimental_mode = True
elif (self.experimental_mode and not condition_met) or not enabled:
self.experimental_mode = False
self.status_value = 0
# Update the onroad status bar
if self.status_value != self.previous_status_value:
self.params_memory.put_int("CEStatus", self.status_value)
self.previous_status_value = self.status_value
self.update_conditions(lead, modelData, radarState, road_curvature, stop_distance, t_follow, v_ego, v_lead)
# Check conditions for the appropriate state of Experimental Mode
def check_conditions(self, carState, frogpilotNavigation, lead, modelData, stop_distance, v_ego):
if carState.standstill:
self.status_value = 0
return self.experimental_mode
# Keep Experimental Mode active if stopping for a red light
if self.status_value == 15 and self.slowing_down(v_ego):
return True
# Navigation check
if self.navigation and modelData.navEnabled and (frogpilotNavigation.approachingIntersection or frogpilotNavigation.approachingTurn) and (self.navigation_lead or not self.lead_detected):
self.status_value = 7 if frogpilotNavigation.approachingIntersection else 8
return True
# Speed check
if (not self.lead_detected and v_ego <= self.limit) or (self.lead_detected and v_ego <= self.limit_lead):
self.status_value = 10 if self.lead_detected else 11
return True
# Slower lead check
if self.slower_lead and self.slower_lead_detected:
self.status_value = 12
return True
# Turn signal check
if self.signal and v_ego <= CITY_SPEED_LIMIT and (carState.leftBlinker or carState.rightBlinker):
self.status_value = 13
return True
# Road curvature check
if self.curves and self.curve_detected:
self.status_value = 14
return True
# Stop sign and light check
if self.stop_lights and self.red_light_detected:
self.status_value = 15
return True
return False
def update_conditions(self, lead, modelData, radarState, road_curvature, stop_distance, t_follow, v_ego, v_lead):
self.lead_detection(lead)
self.lead_slowing_down(lead, t_follow, v_lead)
self.road_curvature(road_curvature)
self.slow_lead(lead, stop_distance, t_follow, v_ego, v_lead)
self.stop_sign_and_light(modelData, v_ego)
# Lead detection
def lead_detection(self, lead):
lead_status = lead.status
self.lead_detection_mac.add_data(lead_status)
self.lead_detected = self.lead_detection_mac.get_moving_average() >= PROBABILITY
def lead_slowing_down(self, lead, t_follow, v_lead):
if self.lead_detected:
lead_close = lead.dRel <= v_lead * t_follow
lead_slowing_down = v_lead < self.previous_v_lead
lead_stopped = v_lead < 1
self.previous_v_lead = v_lead
self.lead_slowing_down_mac.add_data(lead_close or lead_slowing_down or lead_stopped)
self.lead_stopping = self.lead_slowing_down_mac.get_moving_average() >= PROBABILITY
else:
self.lead_slowing_down_mac.reset_data()
self.lead_stopping = False
self.previous_v_lead = 0
# Determine if we're slowing down for a potential stop
def slowing_down(self, v_ego):
slowing_down = v_ego < self.previous_v_ego
speed_check = v_ego < CRUISING_SPEED
self.previous_v_ego = v_ego
self.slowing_down_mac.add_data(slowing_down and speed_check)
return self.slowing_down_mac.get_moving_average() >= PROBABILITY
# Determine the road curvature - Credit goes to to Pfeiferj!
def road_curvature(self, road_curvature):
lead_check = self.curves_lead or not self.lead_detected
if lead_check and not self.red_light_detected:
# Setting a limit of 5.0 helps prevent it triggering for red lights
curve_detected = 5.0 >= road_curvature > 1.6
curve_active = road_curvature > 1.1 and self.curve_detected
self.curvature_mac.add_data(curve_detected or curve_active)
self.curve_detected = self.curvature_mac.get_moving_average() >= PROBABILITY
else:
self.curvature_mac.reset_data()
self.curve_detected = False
# Slower lead detection - Credit goes to the DragonPilot team!
def slow_lead(self, lead, stop_distance, t_follow, v_ego, v_lead):
if self.lead_detected:
slower_lead_ahead = lead.dRel < (v_ego - 1) * t_follow
self.slow_lead_mac.add_data(slower_lead_ahead)
self.slower_lead_detected = self.slow_lead_mac.get_moving_average() >= PROBABILITY
else:
self.slow_lead_mac.reset_data()
self.slower_lead_detected = False
# Stop sign/stop light detection - Credit goes to the DragonPilot team!
def stop_sign_and_light(self, modelData, v_ego):
lead_check = self.stop_lights_lead or not self.lead_stopping
# Check if the model data is consistent and wants to stop
model_check = len(modelData.orientation.x) == len(modelData.position.x) == TRAJECTORY_SIZE
model_stopping = modelData.position.x[TRAJECTORY_SIZE - 1] < interp(v_ego * CV.MS_TO_KPH, SLOW_DOWN_BP, SLOW_DOWN_DISTANCE)
# Filter out any other reasons the model may want to slow down
model_filtered = not (self.curve_detected or self.slower_lead_detected)
self.stop_light_mac.add_data(lead_check and model_check and model_stopping and model_filtered)
self.red_light_detected = self.stop_light_mac.get_moving_average() >= PROBABILITY
def update_frogpilot_params(self, is_metric, params):
self.curves = params.get_bool("CECurves")
self.curves_lead = self.curves and params.get_bool("CECurvesLead")
self.limit = params.get_int("CESpeed") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.limit_lead = params.get_int("CESpeedLead") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.navigation = params.get_bool("CENavigation")
self.navigation_lead = self.navigation and params.get_bool("CENavigationLead")
self.signal = params.get_bool("CESignal")
self.slower_lead = params.get_bool("CESlowerLead")
self.stop_lights = params.get_bool("CEStopLights")
self.stop_lights_lead = self.stop_lights and params.get_bool("CEStopLightsLead")

View File

@@ -24,6 +24,28 @@ A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30, .091]
A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60]
A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, .75, .6, .38, .2]
class MovingAverageCalculator:
def __init__(self):
self.data = []
self.total = 0
def add_data(self, value):
if len(self.data) == THRESHOLD:
self.total -= self.data.pop(0)
self.data.append(value)
self.total += value
def get_moving_average(self):
if len(self.data) == 0:
return None
return self.total / len(self.data)
def reset_data(self):
self.data = []
self.total = 0
class FrogPilotFunctions:
def __init__(self) -> None:
self.params = Params()
@@ -57,3 +79,9 @@ class FrogPilotFunctions:
distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp))
return min(distance_to_lane, distance_to_road_edge)
@staticmethod
def road_curvature(modelData, v_ego):
predicted_velocities = np.array(modelData.velocity.x)
curvature_ratios = np.abs(np.array(modelData.acceleration.y)) / (predicted_velocities**2)
return np.amax(curvature_ratios * (v_ego**2))

View File

@@ -3,10 +3,13 @@ import cereal.messaging as messaging
from openpilot.common.conversions import Conversions as CV
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.selfdrive.controls.lib.desire_helper import LANE_CHANGE_SPEED_MIN
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import STOP_DISTANCE
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, get_max_accel
from openpilot.selfdrive.frogpilot.functions.frogpilot_functions import CRUISING_SPEED, FrogPilotFunctions
from openpilot.selfdrive.frogpilot.functions.conditional_experimental_mode import ConditionalExperimentalMode
class FrogPilotPlanner:
def __init__(self, CP, params, params_memory):
self.CP = CP
@@ -14,6 +17,10 @@ class FrogPilotPlanner:
self.fpf = FrogPilotFunctions()
self.cem = ConditionalExperimentalMode(self.params_memory)
self.road_curvature = 0
self.stop_distance = 0
self.v_cruise = 0
self.accel_limits = [A_CRUISE_MIN, get_max_accel(0)]
@@ -45,6 +52,10 @@ class FrogPilotPlanner:
self.accel_limits = [min_accel, max_accel]
# Update Conditional Experimental Mode
if self.conditional_experimental_mode and self.CP.openpilotLongitudinalControl:
self.cem.update(carState, enabled, sm['frogpilotNavigation'], modelData, sm['radarState'], self.road_curvature, self.stop_distance, mpc.t_follow, v_ego)
# Update the current lane widths
check_lane_width = self.blind_spot_path
if check_lane_width and v_ego >= LANE_CHANGE_SPEED_MIN:
@@ -54,6 +65,12 @@ class FrogPilotPlanner:
self.lane_width_left = 0
self.lane_width_right = 0
# Update the current road curvature
self.road_curvature = self.fpf.road_curvature(modelData, v_ego)
# Update the desired stopping distance
self.stop_distance = STOP_DISTANCE
# Update the max allowed speed
self.v_cruise = self.update_v_cruise(carState, controlsState, enabled, modelData, v_cruise, v_ego)
@@ -75,6 +92,8 @@ class FrogPilotPlanner:
frogpilot_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
frogpilotPlan = frogpilot_plan_send.frogpilotPlan
frogpilotPlan.conditionalExperimental = self.cem.experimental_mode
frogpilotPlan.laneWidthLeft = self.lane_width_left
frogpilotPlan.laneWidthRight = self.lane_width_right
@@ -83,6 +102,11 @@ class FrogPilotPlanner:
def update_frogpilot_params(self, params):
self.is_metric = params.get_bool("IsMetric")
self.conditional_experimental_mode = params.get_bool("ConditionalExperimental")
if self.conditional_experimental_mode:
self.cem.update_frogpilot_params(self.is_metric, params)
params.put_bool("ExperimentalMode", True)
custom_ui = params.get_bool("CustomUI")
self.blind_spot_path = custom_ui and params.get_bool("BlindSpotPath")