Conditional Experimental Mode

Added toggles for "Conditional Experimental Mode".

Conditions based on road curvature, turn signals, speed, lead speed, navigation instructions, and stop signs/stop lights are all individually toggleable.

Co-Authored-By: eFini <16603033+efinilan@users.noreply.github.com>
Co-Authored-By: Kumar <36933347+rav4kumar@users.noreply.github.com>
This commit is contained in:
FrogAi
2024-02-28 19:46:38 -07:00
parent 89e6ebdf12
commit 50cc95341d
18 changed files with 423 additions and 8 deletions

View File

@@ -24,6 +24,28 @@ A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30, .091]
A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60]
A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, .75, .6, .38, .2]
class MovingAverageCalculator:
def __init__(self):
self.data = []
self.total = 0
def add_data(self, value):
if len(self.data) == THRESHOLD:
self.total -= self.data.pop(0)
self.data.append(value)
self.total += value
def get_moving_average(self):
if len(self.data) == 0:
return None
return self.total / len(self.data)
def reset_data(self):
self.data = []
self.total = 0
class FrogPilotFunctions:
def __init__(self) -> None:
self.params = Params()
@@ -57,3 +79,9 @@ class FrogPilotFunctions:
distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp))
return min(distance_to_lane, distance_to_road_edge)
@staticmethod
def road_curvature(modelData, v_ego):
predicted_velocities = np.array(modelData.velocity.x)
curvature_ratios = np.abs(np.array(modelData.acceleration.y)) / (predicted_velocities**2)
return np.amax(curvature_ratios * (v_ego**2))