This commit is contained in:
Your Name
2024-04-27 13:06:31 -05:00
parent 71b83ffe7f
commit ab7726ef50
169 changed files with 15067 additions and 694 deletions

View File

@@ -0,0 +1,325 @@
import numpy as np
import cereal.messaging as messaging
from cereal import log
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.selfdrive.controls.lib.desire_helper import LANE_CHANGE_SPEED_MIN
from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import A_CHANGE_COST, J_EGO_COST, COMFORT_BRAKE, STOP_DISTANCE, get_jerk_factor, \
get_safe_obstacle_distance, get_stopped_equivalence_factor, get_T_FOLLOW
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, Lead, get_max_accel
from openpilot.system.version import get_short_branch
from openpilot.selfdrive.frogpilot.controls.lib.conditional_experimental_mode import ConditionalExperimentalMode
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import CITY_SPEED_LIMIT, CRUISING_SPEED, calculate_lane_width, calculate_road_curvature
from openpilot.selfdrive.frogpilot.controls.lib.map_turn_speed_controller import MapTurnSpeedController
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import RADARLESS_MODELS
from openpilot.selfdrive.frogpilot.controls.lib.speed_limit_controller import SpeedLimitController
# Acceleration profiles - Credit goes to the DragonPilot team!
# MPH = [0., 18, 36, 63, 94]
A_CRUISE_MIN_BP_CUSTOM = [0., 8., 16., 28., 42.]
# MPH = [0., 6.71, 13.4, 17.9, 24.6, 33.6, 44.7, 55.9, 67.1, 123]
A_CRUISE_MAX_BP_CUSTOM = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.]
A_CRUISE_MIN_VALS_ECO = [-0.001, -0.010, -0.28, -0.56, -0.56]
A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30, .091]
A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60]
A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, .75, .6, .38, .2]
TRAFFIC_MODE_BP = [0., CITY_SPEED_LIMIT]
TARGET_LAT_A = 1.9 # m/s^2
def get_min_accel_eco(v_ego):
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_ECO)
def get_max_accel_eco(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_ECO)
def get_min_accel_sport(v_ego):
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_SPORT)
def get_max_accel_sport(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_SPORT)
class FrogPilotPlanner:
def __init__(self, CP):
self.CP = CP
self.params = Params()
self.params_memory = Params("/dev/shm/params")
self.cem = ConditionalExperimentalMode()
self.lead_one = Lead()
self.mtsc = MapTurnSpeedController()
self.release = get_short_branch() == "FrogPilot"
self.radarless_model = self.params.get("Model", encoding='utf-8') in RADARLESS_MODELS
self.override_slc = False
self.jerk = 0
self.overridden_speed = 0
self.mtsc_target = 0
self.slc_target = 0
self.t_follow = 0
self.vtsc_target = 0
def update(self, carState, controlsState, frogpilotCarControl, frogpilotNavigation, liveLocationKalman, modelData, radarState):
v_cruise_kph = min(controlsState.vCruise, V_CRUISE_MAX)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
v_ego = max(carState.vEgo, 0)
v_lead = self.lead_one.vLead
if self.acceleration_profile == 1:
self.max_accel = get_max_accel_eco(v_ego)
elif self.acceleration_profile in (2, 3):
self.max_accel = get_max_accel_sport(v_ego)
elif not controlsState.experimentalMode:
self.max_accel = get_max_accel(v_ego)
else:
self.max_accel = ACCEL_MAX
v_cruise_changed = (self.mtsc_target or self.vtsc_target) < v_cruise
if self.deceleration_profile == 1 and not v_cruise_changed:
self.min_accel = get_min_accel_eco(v_ego)
elif self.deceleration_profile == 2 and not v_cruise_changed:
self.min_accel = get_min_accel_sport(v_ego)
elif not controlsState.experimentalMode:
self.min_accel = A_CRUISE_MIN
else:
self.min_accel = ACCEL_MIN
check_lane_width = self.adjacent_lanes or self.blind_spot_path or self.lane_detection
if check_lane_width and v_ego >= LANE_CHANGE_SPEED_MIN:
self.lane_width_left = float(calculate_lane_width(modelData.laneLines[0], modelData.laneLines[1], modelData.roadEdges[0]))
self.lane_width_right = float(calculate_lane_width(modelData.laneLines[3], modelData.laneLines[2], modelData.roadEdges[1]))
else:
self.lane_width_left = 0
self.lane_width_right = 0
road_curvature = calculate_road_curvature(modelData, v_ego)
if self.lead_one.status and self.CP.openpilotLongitudinalControl:
base_jerk = get_jerk_factor(self.custom_personalities, self.aggressive_jerk, self.standard_jerk, self.relaxed_jerk, controlsState.personality)
base_t_follow = get_T_FOLLOW(self.custom_personalities, self.aggressive_follow, self.standard_follow, self.relaxed_follow, controlsState.personality)
self.safe_obstacle_distance = int(np.mean(get_safe_obstacle_distance(v_ego, self.t_follow)))
self.safe_obstacle_distance_stock = int(np.mean(get_safe_obstacle_distance(v_ego, base_t_follow)))
self.stopped_equivalence_factor = int(np.mean(get_stopped_equivalence_factor(v_lead)))
self.jerk, self.t_follow = self.update_follow_values(base_jerk, self.lead_one, base_t_follow, frogpilotCarControl.trafficModeActive, v_ego, v_lead)
else:
self.safe_obstacle_distance = 0
self.safe_obstacle_distance_stock = 0
self.stopped_equivalence_factor = 0
self.t_follow = 1.45
self.v_cruise = self.update_v_cruise(carState, controlsState, controlsState.enabled, liveLocationKalman, modelData, road_curvature, v_cruise, v_ego)
if self.conditional_experimental_mode and self.CP.openpilotLongitudinalControl or self.green_light_alert:
self.cem.update(carState, controlsState.enabled, frogpilotNavigation, self.lead_one, modelData, road_curvature, self.t_follow, v_ego)
if self.radarless_model:
model_leads = list(modelData.leadsV3)
if len(model_leads) > 0:
model_lead = model_leads[0]
self.lead_one.update(model_lead.x[0], model_lead.y[0], model_lead.v[0], model_lead.a[0], model_lead.prob)
else:
self.lead_one.reset()
else:
self.lead_one = radarState.leadOne
def update_follow_values(self, jerk, lead_one, t_follow, trafficModeActive, v_ego, v_lead):
if trafficModeActive:
jerk = interp(v_ego, TRAFFIC_MODE_BP, self.traffic_mode_jerk)
t_follow = interp(v_ego, TRAFFIC_MODE_BP, self.traffic_mode_t_follow)
stopping_distance = STOP_DISTANCE + max(self.increased_stopping_distance - v_ego if not trafficModeActive else 0, 0)
lead_distance = self.lead_one.dRel + stopping_distance
# Offset by FrogAi for FrogPilot for a more natural takeoff with a lead
if self.aggressive_acceleration:
distance_factor = np.maximum(1, lead_distance - (v_ego * t_follow))
standstill_offset = max(stopping_distance - v_ego, 0)
acceleration_offset = np.clip((v_lead - v_ego) + standstill_offset - COMFORT_BRAKE, 1, distance_factor)
jerk /= acceleration_offset
t_follow /= acceleration_offset
# Offset by FrogAi for FrogPilot for a more natural approach to a slower lead
if self.smoother_braking:
distance_factor = np.maximum(1, lead_distance - (v_lead * t_follow))
far_lead_offset = max(lead_distance - CITY_SPEED_LIMIT, 0) if self.smoother_braking_far_lead else 0
braking_offset = np.clip((v_ego - v_lead) + far_lead_offset - COMFORT_BRAKE, 1, distance_factor)
if self.smoother_braking_jerk:
jerk *= max(braking_offset**(1 / COMFORT_BRAKE), 1)
t_follow /= braking_offset
return jerk, t_follow
def update_v_cruise(self, carState, controlsState, enabled, liveLocationKalman, modelData, road_curvature, v_cruise, v_ego):
gps_check = (liveLocationKalman.status == log.LiveLocationKalman.Status.valid) and liveLocationKalman.positionGeodetic.valid and liveLocationKalman.gpsOK
v_cruise_cluster = max(controlsState.vCruiseCluster, controlsState.vCruise) * CV.KPH_TO_MS
v_cruise_diff = v_cruise_cluster - v_cruise
v_ego_cluster = max(carState.vEgoCluster, v_ego)
v_ego_diff = v_ego_cluster - v_ego
# Pfeiferj's Map Turn Speed Controller
if self.map_turn_speed_controller and v_ego > CRUISING_SPEED and enabled and gps_check:
mtsc_active = self.mtsc_target < v_cruise
self.mtsc_target = np.clip(self.mtsc.target_speed(v_ego, carState.aEgo), CRUISING_SPEED, v_cruise)
if self.mtsc_curvature_check and road_curvature < 1.0 and not mtsc_active:
self.mtsc_target = v_cruise
if self.mtsc_target == CRUISING_SPEED:
self.mtsc_target = v_cruise
else:
self.mtsc_target = v_cruise
# Pfeiferj's Speed Limit Controller
if self.speed_limit_controller:
SpeedLimitController.update(v_ego)
unconfirmed_slc_target = SpeedLimitController.desired_speed_limit
# Check if the new speed limit has been confirmed by the user
if self.speed_limit_confirmation:
if self.params_memory.get_bool("SLCConfirmed") or self.slc_target == 0:
self.slc_target = unconfirmed_slc_target
self.params_memory.put_bool("SLCConfirmed", False)
else:
self.slc_target = unconfirmed_slc_target
# Override SLC upon gas pedal press and reset upon brake/cancel button
self.override_slc &= self.overridden_speed > self.slc_target
self.override_slc |= carState.gasPressed and v_ego > self.slc_target
self.override_slc &= enabled
# Use the override speed if SLC is being overridden
if self.override_slc:
if self.speed_limit_controller_override == 1:
# Set the speed limit to the manual set speed
if carState.gasPressed:
self.overridden_speed = v_ego + v_ego_diff
self.overridden_speed = np.clip(self.overridden_speed, self.slc_target, v_cruise + v_cruise_diff)
elif self.speed_limit_controller_override == 2:
# Set the speed limit to the max set speed
self.overridden_speed = v_cruise + v_cruise_diff
else:
self.overridden_speed = 0
else:
self.slc_target = v_cruise
# Pfeiferj's Vision Turn Controller
if self.vision_turn_controller and v_ego > CRUISING_SPEED and enabled:
orientation_rate = np.array(np.abs(modelData.orientationRate.z)) * self.curve_sensitivity
velocity = np.array(modelData.velocity.x)
max_pred_lat_acc = np.amax(orientation_rate * velocity)
max_curve = max_pred_lat_acc / (v_ego**2)
adjusted_target_lat_a = TARGET_LAT_A * self.turn_aggressiveness
self.vtsc_target = (adjusted_target_lat_a / max_curve)**0.5
self.vtsc_target = np.clip(self.vtsc_target, CRUISING_SPEED, v_cruise)
else:
self.vtsc_target = v_cruise
targets = [self.mtsc_target, max(self.overridden_speed, self.slc_target) - v_ego_diff, self.vtsc_target]
filtered_targets = [target if target > CRUISING_SPEED else v_cruise for target in targets]
return min(filtered_targets)
def publish(self, sm, pm):
frogpilot_plan_send = messaging.new_message('frogpilotPlan')
frogpilot_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
frogpilotPlan = frogpilot_plan_send.frogpilotPlan
frogpilotPlan.accelerationJerk = A_CHANGE_COST * (float(self.jerk) if self.lead_one.status else 1)
frogpilotPlan.accelerationJerkStock = A_CHANGE_COST
frogpilotPlan.adjustedCruise = float(min(self.mtsc_target, self.vtsc_target) * (CV.MS_TO_KPH if self.is_metric else CV.MS_TO_MPH))
frogpilotPlan.conditionalExperimental = self.cem.experimental_mode
frogpilotPlan.desiredFollowDistance = self.safe_obstacle_distance - self.stopped_equivalence_factor
frogpilotPlan.egoJerk = J_EGO_COST * (float(self.jerk) if self.lead_one.status else 1)
frogpilotPlan.egoJerkStock = J_EGO_COST
frogpilotPlan.jerk = float(self.jerk)
frogpilotPlan.safeObstacleDistance = self.safe_obstacle_distance
frogpilotPlan.safeObstacleDistanceStock = self.safe_obstacle_distance_stock
frogpilotPlan.stoppedEquivalenceFactor = self.stopped_equivalence_factor
frogpilotPlan.laneWidthLeft = self.lane_width_left
frogpilotPlan.laneWidthRight = self.lane_width_right
frogpilotPlan.minAcceleration = self.min_accel
frogpilotPlan.maxAcceleration = self.max_accel
frogpilotPlan.tFollow = float(self.t_follow)
frogpilotPlan.vCruise = float(self.v_cruise)
frogpilotPlan.redLight = self.cem.red_light_detected
frogpilotPlan.slcOverridden = bool(self.override_slc)
frogpilotPlan.slcOverriddenSpeed = float(self.overridden_speed)
frogpilotPlan.slcSpeedLimit = self.slc_target
frogpilotPlan.slcSpeedLimitOffset = SpeedLimitController.offset
frogpilotPlan.unconfirmedSlcSpeedLimit = SpeedLimitController.desired_speed_limit
frogpilotPlan.vtscControllingCurve = bool(self.mtsc_target > self.vtsc_target)
pm.send('frogpilotPlan', frogpilot_plan_send)
def update_frogpilot_params(self):
self.is_metric = self.params.get_bool("IsMetric")
self.conditional_experimental_mode = self.CP.openpilotLongitudinalControl and self.params.get_bool("ConditionalExperimental")
if self.conditional_experimental_mode:
self.cem.update_frogpilot_params()
custom_alerts = self.params.get_bool("CustomAlerts")
self.green_light_alert = custom_alerts and self.params.get_bool("GreenLightAlert")
self.custom_personalities = self.params.get_bool("CustomPersonalities")
self.aggressive_jerk = self.params.get_float("AggressiveJerk")
self.aggressive_follow = self.params.get_float("AggressiveFollow")
self.standard_jerk = self.params.get_float("StandardJerk")
self.standard_follow = self.params.get_float("StandardFollow")
self.relaxed_jerk = self.params.get_float("RelaxedJerk")
self.relaxed_follow = self.params.get_float("RelaxedFollow")
self.traffic_jerk = self.params.get_float("TrafficJerk")
self.traffic_follow = self.params.get_float("TrafficFollow")
self.traffic_mode_jerk = [self.traffic_jerk, self.aggressive_jerk] if self.custom_personalities and not self.release else [1.0, 0.5]
self.traffic_mode_t_follow = [self.traffic_follow, self.aggressive_follow] if self.custom_personalities and not self.release else [0.5, 1.0]
custom_ui = self.params.get_bool("CustomUI")
self.adjacent_lanes = custom_ui and self.params.get_bool("AdjacentPath")
self.blind_spot_path = custom_ui and self.params.get_bool("BlindSpotPath")
nudgeless_lane_change = self.params.get_bool("NudgelessLaneChange")
self.lane_detection = nudgeless_lane_change and self.params.get_int("LaneDetectionWidth") != 0
longitudinal_tune = self.CP.openpilotLongitudinalControl and self.params.get_bool("LongitudinalTune")
self.acceleration_profile = self.params.get_int("AccelerationProfile") if longitudinal_tune else 0
self.deceleration_profile = self.params.get_int("DecelerationProfile") if longitudinal_tune else 0
self.aggressive_acceleration = longitudinal_tune and self.params.get_bool("AggressiveAcceleration")
self.increased_stopping_distance = self.params.get_int("StoppingDistance") * (1 if self.is_metric else CV.FOOT_TO_METER) if longitudinal_tune else 0
self.smoother_braking = longitudinal_tune and self.params.get_bool("SmoothBraking")
self.smoother_braking_far_lead = self.smoother_braking and self.params.get_bool("SmoothBrakingFarLead") and not self.release
self.smoother_braking_jerk = self.smoother_braking and self.params.get_bool("SmoothBrakingJerk") and not self.release
self.map_turn_speed_controller = self.CP.openpilotLongitudinalControl and self.params.get_bool("MTSCEnabled")
self.mtsc_curvature_check = self.map_turn_speed_controller and self.params.get_bool("MTSCCurvatureCheck")
self.params_memory.put_float("MapTargetLatA", 2 * (self.params.get_int("MTSCAggressiveness") / 100))
self.speed_limit_controller = self.CP.openpilotLongitudinalControl and self.params.get_bool("SpeedLimitController")
self.speed_limit_confirmation = self.speed_limit_controller and self.params.get_bool("SLCConfirmation")
self.speed_limit_controller_override = self.speed_limit_controller and self.params.get_int("SLCOverride")
self.vision_turn_controller = self.CP.openpilotLongitudinalControl and self.params.get_bool("VisionTurnControl")
self.curve_sensitivity = self.params.get_int("CurveSensitivity") / 100 if self.vision_turn_controller else 1
self.turn_aggressiveness = self.params.get_int("TurnAggressiveness") / 100 if self.vision_turn_controller else 1

View File

@@ -0,0 +1,195 @@
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import CITY_SPEED_LIMIT, CRUISING_SPEED, PROBABILITY, MovingAverageCalculator
from openpilot.selfdrive.frogpilot.controls.lib.speed_limit_controller import SpeedLimitController
SLOW_DOWN_BP = [0., 10., 20., 30., 40., 50., 55., 60.]
SLOW_DOWN_DISTANCE = [20, 30., 50., 70., 80., 90., 105., 120.]
TRAJECTORY_SIZE = 33
class ConditionalExperimentalMode:
def __init__(self):
self.params = Params()
self.params_memory = Params("/dev/shm/params")
self.curve_detected = False
self.experimental_mode = False
self.lead_detected = False
self.red_light_detected = False
self.slower_lead_detected = False
self.previous_status_value = 0
self.previous_v_ego = 0
self.previous_v_lead = 0
self.status_value = 0
self.curvature_mac = MovingAverageCalculator()
self.lead_detection_mac = MovingAverageCalculator()
self.lead_slowing_down_mac = MovingAverageCalculator()
self.slow_lead_mac = MovingAverageCalculator()
self.slowing_down_mac = MovingAverageCalculator()
self.stop_light_mac = MovingAverageCalculator()
self.update_frogpilot_params()
def update(self, carState, enabled, frogpilotNavigation, lead, modelData, road_curvature, t_follow, v_ego):
lead_distance = lead.dRel
standstill = carState.standstill
v_lead = lead.vLead
if self.experimental_mode_via_press and enabled:
overridden = self.params_memory.get_int("CEStatus")
else:
overridden = 0
self.update_conditions(lead_distance, lead.status, modelData, road_curvature, standstill, t_follow, v_ego, v_lead)
condition_met = self.check_conditions(carState, frogpilotNavigation, lead, modelData, standstill, v_ego) and enabled
if condition_met and overridden not in {1, 3, 5} or overridden in {2, 4, 6}:
self.experimental_mode = True
else:
self.experimental_mode = False
self.status_value = 0
self.status_value = overridden if overridden in {1, 2, 3, 4, 5, 6} else self.status_value
if self.status_value != self.previous_status_value:
self.params_memory.put_int("CEStatus", self.status_value)
self.previous_status_value = self.status_value
if self.params_memory.get_bool("FrogPilotTogglesUpdated"):
self.update_frogpilot_params()
def check_conditions(self, carState, frogpilotNavigation, lead, modelData, standstill, v_ego):
if standstill:
self.status_value = 0
return self.experimental_mode
# Keep Experimental Mode active if stopping for a red light
if self.status_value == 15 and self.slowing_down(v_ego):
return True
if self.navigation and modelData.navEnabled and (frogpilotNavigation.approachingIntersection or frogpilotNavigation.approachingTurn) and (self.navigation_lead or not self.lead_detected):
self.status_value = 7 if frogpilotNavigation.approachingIntersection else 8
return True
if SpeedLimitController.experimental_mode:
self.status_value = 9
return True
if (not self.lead_detected and v_ego <= self.limit) or (self.lead_detected and v_ego <= self.limit_lead):
self.status_value = 10 if self.lead_detected else 11
return True
if self.slower_lead and self.slower_lead_detected:
self.status_value = 12
return True
if self.signal and v_ego <= CITY_SPEED_LIMIT and (carState.leftBlinker or carState.rightBlinker):
self.status_value = 13
return True
if self.curves and self.curve_detected:
self.status_value = 14
return True
if self.stop_lights and self.red_light_detected:
self.status_value = 15
return True
return False
def update_conditions(self, lead_distance, lead_status, modelData, road_curvature, standstill, t_follow, v_ego, v_lead):
self.lead_detection(lead_status)
self.road_curvature(road_curvature)
self.slow_lead(lead_distance, t_follow, v_ego)
self.stop_sign_and_light(lead_distance, modelData, standstill, v_ego, v_lead)
def lead_detection(self, lead_status):
self.lead_detection_mac.add_data(lead_status)
self.lead_detected = self.lead_detection_mac.get_moving_average() >= PROBABILITY
def lead_slowing_down(self, lead_distance, v_ego, v_lead):
if self.lead_detected:
lead_close = lead_distance < CITY_SPEED_LIMIT
lead_far = lead_distance >= CITY_SPEED_LIMIT and (v_lead >= self.previous_v_lead > 1 or v_lead > v_ego)
lead_slowing_down = v_lead < self.previous_v_lead
lead_stopped = v_lead < 1
self.previous_v_lead = v_lead
self.lead_slowing_down_mac.add_data((lead_close or lead_slowing_down or lead_stopped) and not lead_far)
return self.lead_slowing_down_mac.get_moving_average() >= PROBABILITY
else:
self.lead_slowing_down_mac.reset_data()
self.previous_v_lead = 0
return False
# Determine the road curvature - Credit goes to to Pfeiferj!
def road_curvature(self, road_curvature):
lead_check = self.curves_lead or not self.lead_detected
if lead_check and not self.red_light_detected:
# Setting a limit of 5.0 helps prevent it triggering for red lights
curve_detected = 5.0 >= road_curvature > 1.6
curve_active = 5.0 >= road_curvature > 1.1 and self.curve_detected
self.curvature_mac.add_data(curve_detected or curve_active)
self.curve_detected = self.curvature_mac.get_moving_average() >= PROBABILITY
else:
self.curvature_mac.reset_data()
self.curve_detected = False
def slow_lead(self, lead_distance, t_follow, v_ego):
if self.lead_detected:
slower_lead_ahead = lead_distance < (v_ego - 1) * t_follow
self.slow_lead_mac.add_data(slower_lead_ahead)
self.slower_lead_detected = self.slow_lead_mac.get_moving_average() >= PROBABILITY
else:
self.slow_lead_mac.reset_data()
self.slower_lead_detected = False
def slowing_down(self, v_ego):
slowing_down = v_ego <= self.previous_v_ego
speed_check = v_ego < CRUISING_SPEED
self.previous_v_ego = v_ego
self.slowing_down_mac.add_data(slowing_down and speed_check)
return self.slowing_down_mac.get_moving_average() >= PROBABILITY
# Stop sign/stop light detection - Credit goes to the DragonPilot team!
def stop_sign_and_light(self, lead_distance, modelData, standstill, v_ego, v_lead):
lead_check = self.stop_lights_lead or not self.lead_slowing_down(lead_distance, v_ego, v_lead) or standstill
model_check = len(modelData.orientation.x) == len(modelData.position.x) == TRAJECTORY_SIZE
model_stopping = modelData.position.x[TRAJECTORY_SIZE - 1] < interp(v_ego * CV.MS_TO_KPH, SLOW_DOWN_BP, SLOW_DOWN_DISTANCE)
model_filtered = not (self.curve_detected or self.slower_lead_detected)
self.stop_light_mac.add_data(lead_check and model_check and model_stopping and model_filtered)
self.red_light_detected = self.stop_light_mac.get_moving_average() >= PROBABILITY
def update_frogpilot_params(self):
is_metric = self.params.get_bool("IsMetric")
self.curves = self.params.get_bool("CECurves")
self.curves_lead = self.curves and self.params.get_bool("CECurvesLead")
self.experimental_mode_via_press = self.params.get_bool("ExperimentalModeActivation")
self.limit = self.params.get_int("CESpeed") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.limit_lead = self.params.get_int("CESpeedLead") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.navigation = self.params.get_bool("CENavigation")
self.navigation_lead = self.navigation and self.params.get_bool("CENavigationLead")
self.signal = self.params.get_bool("CESignal")
self.slower_lead = self.params.get_bool("CESlowerLead")
self.stop_lights = self.params.get_bool("CEStopLights")
self.stop_lights_lead = self.stop_lights and self.params.get_bool("CEStopLightsLead")

View File

@@ -0,0 +1,163 @@
import datetime
import filecmp
import glob
import numpy as np
import os
import shutil
import subprocess
import time
from openpilot.common.basedir import BASEDIR
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.system.hardware import HARDWARE
from openpilot.system.version import get_short_branch, get_commit_date
CITY_SPEED_LIMIT = 25 # 55mph is typically the minimum speed for highways
CRUISING_SPEED = 5 # Roughly the speed cars go when not touching the gas while in drive
PROBABILITY = 0.6 # 60% chance of condition being true
THRESHOLD = 5 # Time threshold (0.25s)
def calculate_lane_width(lane, current_lane, road_edge):
lane_x, lane_y = np.array(lane.x), np.array(lane.y)
edge_x, edge_y = np.array(road_edge.x), np.array(road_edge.y)
current_x, current_y = np.array(current_lane.x), np.array(current_lane.y)
lane_y_interp = np.interp(current_x, lane_x[lane_x.argsort()], lane_y[lane_x.argsort()])
road_edge_y_interp = np.interp(current_x, edge_x[edge_x.argsort()], edge_y[edge_x.argsort()])
distance_to_lane = np.mean(np.abs(current_y - lane_y_interp))
distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp))
return min(distance_to_lane, distance_to_road_edge)
def calculate_road_curvature(modelData, v_ego):
predicted_velocities = np.array(modelData.velocity.x)
curvature_ratios = np.abs(np.array(modelData.acceleration.y)) / (predicted_velocities**2)
return np.amax(curvature_ratios * (v_ego**2))
class MovingAverageCalculator:
def __init__(self):
self.data = []
self.total = 0
def add_data(self, value):
if len(self.data) == THRESHOLD:
self.total -= self.data.pop(0)
self.data.append(value)
self.total += value
def get_moving_average(self):
if len(self.data) == 0:
return None
return self.total / len(self.data)
def reset_data(self):
self.data = []
self.total = 0
class FrogPilotFunctions:
@classmethod
def run_cmd(cls, cmd, success_msg, fail_msg):
try:
subprocess.check_call(cmd)
print(success_msg)
except subprocess.CalledProcessError as e:
print(f"{fail_msg}: {e}")
except Exception as e:
print(f"Unexpected error occurred: {e}")
@classmethod
def backup_frogpilot(cls):
frogpilot_backup_directory = "/data/backups"
os.makedirs(frogpilot_backup_directory, exist_ok=True)
auto_backups = sorted(glob.glob(os.path.join(frogpilot_backup_directory, "*_auto")),
key=os.path.getmtime, reverse=True)
for old_backup in auto_backups[4:]:
shutil.rmtree(old_backup)
print(f"Deleted oldest FrogPilot backup to maintain limit: {os.path.basename(old_backup)}")
branch = get_short_branch()
commit = get_commit_date()[12:-16]
backup_folder_name = f"{branch}_{commit}_auto"
backup_path = os.path.join(frogpilot_backup_directory, backup_folder_name)
if not os.path.exists(backup_path):
cmd = ['sudo', 'cp', '-a', f"{BASEDIR}", f"{backup_path}/"]
cls.run_cmd(cmd, f"Successfully backed up FrogPilot to {backup_folder_name}.", f"Failed to backup FrogPilot to {backup_folder_name}.")
@classmethod
def backup_toggles(cls):
params = Params()
params_storage = Params("/persist/params")
all_keys = params.all_keys()
for key in all_keys:
value = params.get(key)
if value is not None:
params_storage.put(key, value)
toggle_backup_directory = "/data/toggle_backups"
os.makedirs(toggle_backup_directory, exist_ok=True)
auto_backups = sorted(glob.glob(os.path.join(toggle_backup_directory, "*_auto")),
key=os.path.getmtime, reverse=True)
for old_backup in auto_backups[9:]:
shutil.rmtree(old_backup)
print(f"Deleted oldest toggle backup to maintain limit: {os.path.basename(old_backup)}")
current_datetime = datetime.datetime.now().strftime("%Y-%m-%d_%I-%M%p").lower()
backup_folder_name = f"{current_datetime}_auto"
backup_path = os.path.join(toggle_backup_directory, backup_folder_name)
if not os.path.exists(backup_path):
cmd = ['sudo', 'cp', '-a', '/data/params/.', f"{backup_path}/"]
cls.run_cmd(cmd, f"Successfully backed up toggles to {backup_folder_name}.", f"Failed to backup toggles to {backup_folder_name}.")
@classmethod
def delete_logs(cls):
directories_to_check = []
for root, dirs, files in os.walk('/data/media/0/realdata/', topdown=False):
for name in files:
filepath = os.path.join(root, name)
if time.time() - max(os.path.getctime(filepath), os.path.getmtime(filepath)) < 3600:
os.remove(filepath)
if root not in directories_to_check:
directories_to_check.append(root)
for directory in directories_to_check:
try:
os.rmdir(directory)
except OSError:
pass
@classmethod
def setup_frogpilot(cls):
remount_cmd = ['sudo', 'mount', '-o', 'remount,rw', '/persist']
cls.run_cmd(remount_cmd, "Successfully remounted /persist as read-write.", "Failed to remount /persist.")
if os.path.isdir('/persist/comma/params') and os.path.isdir('/persist/params'):
if os.listdir('/persist/comma/params') and os.listdir('/persist/params'):
shutil.rmtree('/persist/comma/params')
frogpilot_boot_logo = f'{BASEDIR}/selfdrive/frogpilot/assets/other_images/frogpilot_boot_logo.png'
boot_logo_location = '/usr/comma/bg.jpg'
remount_cmd = ['sudo', 'mount', '-o', 'remount,rw', '/']
cls.run_cmd(remount_cmd, "File system remounted as read-write.", "Failed to remount file system")
if not filecmp.cmp(frogpilot_boot_logo, boot_logo_location, shallow=False):
copy_cmd = ['sudo', 'cp', frogpilot_boot_logo, boot_logo_location]
cls.run_cmd(copy_cmd, "Successfully replaced bg.jpg with frogpilot_boot_logo.png.", "Failed to replace boot logo")
@classmethod
def uninstall_frogpilot(cls):
original_boot_logo = f'{BASEDIR}/selfdrive/frogpilot/assets/other_images/bg.jpg'
boot_logo_location = '/usr/comma/bg.jpg'
copy_cmd = ['sudo', 'cp', original_boot_logo, boot_logo_location]
cls.run_cmd(copy_cmd, "Successfully restored the original boot logo.", "Failed to restore the original boot logo.")
HARDWARE.uninstall()

View File

@@ -0,0 +1,39 @@
#!/usr/bin/env python3
import subprocess
import sys
import time
from panda import Panda
from openpilot.system.hardware import HARDWARE
unlockCommand = [0x40, 0x05, 0x30, 0x11, 0x00, 0x40, 0x00, 0x00]
lockCommand = [0x40, 0x05, 0x30, 0x11, 0x00, 0x80, 0x00, 0x00]
p = Panda()
def main():
subprocess.run(['pkill', '-f', 'openpilot'], check=True)
p.set_safety_mode(Panda.SAFETY_ALLOUTPUT)
# args
if len(sys.argv) != 2:
sys.exit('usage:\n\nroot@localhost:/data/openpilot$ pkill -f openpilot\n\nroot@localhost:/data/openpilot$ doors.py --lock\n\nroot@localhost:/data/openpilot$ doors.py --unlock\n\nroot@localhost:/data/openpilot$ reboot')
if sys.argv[1] == '--lock' or sys.argv[1] == '-l':
p.can_send(0x750, bytes(unlockCommand), 0)
time.sleep(0.2)
p.can_send(0x750, bytes(lockCommand), 0)
if sys.argv[1] == '--unlock' or sys.argv[1] == '-u':
p.can_send(0x750, bytes(lockCommand), 0)
time.sleep(0.2)
p.can_send(0x750, bytes(unlockCommand), 0)
time.sleep(0.2)
p.set_safety_mode(Panda.SAFETY_TOYOTA)
p.send_heartbeat()
print('\n\n\nrelay ON again\nkthxbay\n')
HARDWARE.soft_reboot()
main()

View File

@@ -0,0 +1,153 @@
# PFEIFER - MTSC
import json
import math
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
params_memory = Params("/dev/shm/params")
R = 6373000.0 # approximate radius of earth in meters
TO_RADIANS = math.pi / 180
TO_DEGREES = 180 / math.pi
TARGET_JERK = -0.6 # m/s^3 should match up with the long planner
TARGET_ACCEL = -1.2 # m/s^2 should match up with the long planner
TARGET_OFFSET = 1.0 # seconds - This controls how soon before the curve you reach the target velocity. It also helps
# reach the target velocity when innacuracies in the distance modeling logic would cause overshoot.
# The value is multiplied against the target velocity to determine the additional distance. This is
# done to keep the distance calculations consistent but results in the offset actually being less
# time than specified depending on how much of a speed diffrential there is between v_ego and the
# target velocity.
def calculate_accel(t, target_jerk, a_ego):
return a_ego + target_jerk * t
def calculate_velocity(t, target_jerk, a_ego, v_ego):
return v_ego + a_ego * t + target_jerk/2 * (t ** 2)
def calculate_distance(t, target_jerk, a_ego, v_ego):
return t * v_ego + a_ego/2 * (t ** 2) + target_jerk/6 * (t ** 3)
# points should be in radians
# output is meters
def distance_to_point(ax, ay, bx, by):
a = math.sin((bx-ax)/2)*math.sin((bx-ax)/2) + math.cos(ax) * math.cos(bx)*math.sin((by-ay)/2)*math.sin((by-ay)/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
return R * c # in meters
class MapTurnSpeedController:
def __init__(self):
self.target_lat = 0.0
self.target_lon = 0.0
self.target_v = 0.0
def target_speed(self, v_ego, a_ego) -> float:
lat = 0.0
lon = 0.0
try:
position = json.loads(params_memory.get("LastGPSPosition"))
lat = position["latitude"]
lon = position["longitude"]
except: return 0.0
try:
target_velocities = json.loads(params_memory.get("MapTargetVelocities"))
except: return 0.0
min_dist = 1000
min_idx = 0
distances = []
# find our location in the path
for i in range(len(target_velocities)):
target_velocity = target_velocities[i]
tlat = target_velocity["latitude"]
tlon = target_velocity["longitude"]
d = distance_to_point(lat * TO_RADIANS, lon * TO_RADIANS, tlat * TO_RADIANS, tlon * TO_RADIANS)
distances.append(d)
if d < min_dist:
min_dist = d
min_idx = i
# only look at values from our current position forward
forward_points = target_velocities[min_idx:]
forward_distances = distances[min_idx:]
# find velocities that we are within the distance we need to adjust for
valid_velocities = []
for i in range(len(forward_points)):
target_velocity = forward_points[i]
tlat = target_velocity["latitude"]
tlon = target_velocity["longitude"]
tv = target_velocity["velocity"]
if tv > v_ego:
continue
d = forward_distances[i]
a_diff = (a_ego - TARGET_ACCEL)
accel_t = abs(a_diff / TARGET_JERK)
min_accel_v = calculate_velocity(accel_t, TARGET_JERK, a_ego, v_ego)
max_d = 0
if tv > min_accel_v:
# calculate time needed based on target jerk
a = 0.5 * TARGET_JERK
b = a_ego
c = v_ego - tv
t_a = -1 * ((b**2 - 4 * a * c) ** 0.5 + b) / 2 * a
t_b = ((b**2 - 4 * a * c) ** 0.5 - b) / 2 * a
if not isinstance(t_a, complex) and t_a > 0:
t = t_a
else:
t = t_b
if isinstance(t, complex):
continue
max_d = max_d + calculate_distance(t, TARGET_JERK, a_ego, v_ego)
else:
t = accel_t
max_d = calculate_distance(t, TARGET_JERK, a_ego, v_ego)
# calculate additional time needed based on target accel
t = abs((min_accel_v - tv) / TARGET_ACCEL)
max_d += calculate_distance(t, 0, TARGET_ACCEL, min_accel_v)
if d < max_d + tv * TARGET_OFFSET:
valid_velocities.append((float(tv), tlat, tlon))
# Find the smallest velocity we need to adjust for
min_v = 100.0
target_lat = 0.0
target_lon = 0.0
for tv, lat, lon in valid_velocities:
if tv < min_v:
min_v = tv
target_lat = lat
target_lon = lon
if self.target_v < min_v and not (self.target_lat == 0 and self.target_lon == 0):
for i in range(len(forward_points)):
target_velocity = forward_points[i]
tlat = target_velocity["latitude"]
tlon = target_velocity["longitude"]
tv = target_velocity["velocity"]
if tv > v_ego:
continue
if tlat == self.target_lat and tlon == self.target_lon and tv == self.target_v:
return float(self.target_v)
# not found so lets reset
self.target_v = 0.0
self.target_lat = 0.0
self.target_lon = 0.0
self.target_v = min_v
self.target_lat = target_lat
self.target_lon = target_lon
return min_v

View File

@@ -0,0 +1,102 @@
import os
import stat
import time
import urllib.request
from openpilot.common.params import Params
from openpilot.system.version import get_short_branch
VERSION = 'v1' if get_short_branch() == "FrogPilot" else 'v2'
REPOSITORY_URL = 'https://github.com/FrogAi/FrogPilot-Resources/releases/download'
DEFAULT_MODEL = "wd-40"
DEFAULT_MODEL_NAME = "WD40 (Default)"
MODELS_PATH = '/data/models'
NAVIGATIONLESS_MODELS = {"radical-turtle", "wd-40"}
RADARLESS_MODELS = {"radical-turtle"}
params = Params()
params_memory = Params("/dev/shm/params")
def delete_deprecated_models():
populate_models()
available_models = params.get("AvailableModels", encoding='utf-8').split(',')
if available_models:
current_model = params.get("Model", encoding='utf-8')
current_model_file = os.path.join(MODELS_PATH, f"{current_model}.thneed")
if current_model not in available_models or not os.path.exists(current_model_file):
params.put("Model", DEFAULT_MODEL)
params.put("ModelName", DEFAULT_MODEL_NAME)
for model_file in os.listdir(MODELS_PATH):
if model_file.endswith('.thneed') and model_file[:-7] not in available_models:
os.remove(os.path.join(MODELS_PATH, model_file))
else:
params.put("Model", DEFAULT_MODEL)
params.put("ModelName", DEFAULT_MODEL_NAME)
def download_model():
model = params_memory.get("ModelToDownload", encoding='utf-8')
model_path = os.path.join(MODELS_PATH, f"{model}.thneed")
url = f"{REPOSITORY_URL}/{model}/{model}.thneed"
os.makedirs(MODELS_PATH, exist_ok=True)
for attempt in range(5):
try:
with urllib.request.urlopen(url) as f:
total_file_size = int(f.getheader('Content-Length'))
if total_file_size == 0:
raise ValueError("File is empty")
with open(model_path, 'wb') as output:
current_file_size = 0
while chunk := f.read(8192):
output.write(chunk)
current_file_size += len(chunk)
progress = (current_file_size / total_file_size) * 100
params_memory.put_int("ModelDownloadProgress", int(progress))
os.fsync(output)
if os.path.getsize(model_path) == total_file_size:
print(f"Successfully downloaded the {model} model!")
break
else:
raise Exception("Downloaded model file size does not match expected size. Retrying...")
except Exception as e:
print(f"Attempt {attempt + 1} failed with error: {e}. Retrying...")
if os.path.exists(model_path):
os.remove(model_path)
time.sleep(5)
else:
print(f"Failed to download the {model} model after {attempt + 1} attempts. Giving up... :(")
def populate_models():
model_names_url = f"https://raw.githubusercontent.com/FrogAi/FrogPilot-Resources/master/model_names_{VERSION}.txt"
for attempt in range(5):
try:
with urllib.request.urlopen(model_names_url) as response:
model_info = [line.decode('utf-8').strip().split(' - ') for line in response.readlines() if ' - ' in line.decode('utf-8')]
available_models = ','.join(model[0] for model in model_info)
available_models_names = [model[1] for model in model_info]
params.put("AvailableModels", available_models)
params.put("AvailableModelsNames", ','.join(available_models_names))
current_model_name = params.get("ModelName", encoding='utf-8')
if current_model_name not in available_models_names and "(Default)" in current_model_name:
updated_model_name = current_model_name.replace("(Default)", "").strip()
params.put("ModelName", updated_model_name)
except Exception as e:
print(f"Failed to update models list. Error: {e}. Retrying...")
time.sleep(5)
else:
print(f"Failed to update models list after 5 attempts. Giving up... :(")

View File

@@ -0,0 +1,160 @@
# PFEIFER - SLC - Modified by FrogAi for FrogPilot
import json
import math
from openpilot.common.conversions import Conversions as CV
from openpilot.common.params import Params
R = 6373000.0 # approximate radius of earth in meters
TO_RADIANS = math.pi / 180
TO_DEGREES = 180 / math.pi
# points should be in radians
# output is meters
def distance_to_point(ax, ay, bx, by):
a = math.sin((bx - ax) / 2) ** 2 + math.cos(ax) * math.cos(bx) * math.sin((by - ay) / 2) ** 2
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
return R * c # in meters
class SpeedLimitController:
def __init__(self):
self.params = Params()
self.params_memory = Params("/dev/shm/params")
self.car_speed_limit = 0 # m/s
self.map_speed_limit = 0 # m/s
self.nav_speed_limit = 0 # m/s
self.prv_speed_limit = 0 # m/s
self.lat = 0 # deg
self.lon = 0 # deg
self.update_frogpilot_params()
def update(self, v_ego):
self.car_speed_limit = self.get_param_memory("CarSpeedLimit")
self.write_map_state(v_ego)
self.nav_speed_limit = self.get_param_memory("NavSpeedLimit")
if self.params_memory.get_bool("FrogPilotTogglesUpdated"):
self.update_frogpilot_params()
def get_param_memory(self, key, is_json=False, default=None):
try:
data = self.params_memory.get(key)
if not is_json and data is not None:
return float(data.decode('utf-8'))
return json.loads(data) if is_json else data
except:
return default
def write_map_state(self, v_ego):
self.map_speed_limit = self.get_param_memory("MapSpeedLimit")
next_map_speed_limit = self.get_param_memory("NextMapSpeedLimit", is_json=True, default={})
next_map_speed_limit_value = next_map_speed_limit.get("speedlimit", 0)
next_map_speed_limit_lat = next_map_speed_limit.get("latitude", 0)
next_map_speed_limit_lon = next_map_speed_limit.get("longitude", 0)
position = self.get_param_memory("LastGPSPosition", is_json=True, default={})
self.lat = position.get("latitude", 0)
self.lon = position.get("longitude", 0)
if self.prv_speed_limit < next_map_speed_limit_value > 1:
d = distance_to_point(self.lat * TO_RADIANS, self.lon * TO_RADIANS,
next_map_speed_limit_lat * TO_RADIANS, next_map_speed_limit_lon * TO_RADIANS)
max_d = self.map_speed_lookahead_higher * v_ego
if d < max_d:
self.map_speed_limit = next_map_speed_limit_value
if self.prv_speed_limit > next_map_speed_limit_value > 1:
d = distance_to_point(self.lat * TO_RADIANS, self.lon * TO_RADIANS,
next_map_speed_limit_lat * TO_RADIANS, next_map_speed_limit_lon * TO_RADIANS)
max_d = self.map_speed_lookahead_higher_lower * v_ego
if d < max_d:
self.map_speed_limit = next_map_speed_limit_value
@property
def speed_limit(self):
limits = [self.car_speed_limit, self.map_speed_limit, self.nav_speed_limit]
filtered_limits = [limit for limit in limits if limit is not None and limit > 1]
if self.highest and filtered_limits:
return float(max(filtered_limits))
elif self.lowest and filtered_limits:
return float(min(filtered_limits))
speed_limits = {
"Dashboard": self.car_speed_limit,
"Offline Maps": self.map_speed_limit,
"Navigation": self.nav_speed_limit,
}
priorities = [
self.speed_limit_priority1,
self.speed_limit_priority2,
self.speed_limit_priority3,
]
for priority in priorities:
if priority in speed_limits and speed_limits[priority] in filtered_limits:
return float(speed_limits[priority])
if self.use_previous_limit:
return float(self.prv_speed_limit)
return 0
@property
def offset(self):
if self.speed_limit < 13.5:
return self.offset1
elif self.speed_limit < 24:
return self.offset2
elif self.speed_limit < 29:
return self.offset3
else:
return self.offset4
@property
def desired_speed_limit(self):
if self.speed_limit > 1:
self.update_previous_limit(self.speed_limit)
return self.speed_limit + self.offset
else:
return 0
def update_previous_limit(self, speed_limit):
if self.prv_speed_limit != speed_limit:
self.params.put_float("PreviousSpeedLimit", speed_limit)
self.prv_speed_limit = speed_limit
@property
def experimental_mode(self):
return self.speed_limit == 0 and self.use_experimental_mode
def update_frogpilot_params(self):
conversion = CV.KPH_TO_MS if self.params.get_bool("IsMetric") else CV.MPH_TO_MS
self.map_speed_lookahead_higher = self.params.get_int("SLCLookaheadHigher")
self.map_speed_lookahead_lower = self.params.get_int("SLCLookaheadLower")
self.offset1 = self.params.get_int("Offset1") * conversion
self.offset2 = self.params.get_int("Offset2") * conversion
self.offset3 = self.params.get_int("Offset3") * conversion
self.offset4 = self.params.get_int("Offset4") * conversion
self.speed_limit_priority1 = self.params.get("SLCPriority1", encoding='utf-8')
self.speed_limit_priority2 = self.params.get("SLCPriority2", encoding='utf-8')
self.speed_limit_priority3 = self.params.get("SLCPriority3", encoding='utf-8')
self.highest = self.speed_limit_priority1 == "Highest"
self.lowest = self.speed_limit_priority1 == "Lowest"
slc_fallback = self.params.get_int("SLCFallback")
self.use_experimental_mode = slc_fallback == 1
self.use_previous_limit = slc_fallback == 2
self.prv_speed_limit = self.params.get_float("PreviousSpeedLimit")
SpeedLimitController = SpeedLimitController()

View File

@@ -0,0 +1,89 @@
import datetime
import time
import threading
from openpilot.common.params import Params
class ThemeManager:
def __init__(self):
self.params = Params()
self.params_memory = Params("/dev/shm/params")
self.previous_theme_id = 0
@staticmethod
def calculate_easter(year):
a = year % 19
b = year // 100
c = year % 100
d = b // 4
e = b % 4
f = (b + 8) // 25
g = (b - f + 1) // 3
h = (19 * a + b - d - g + 15) % 30
i = c // 4
k = c % 4
l = (32 + 2 * e + 2 * i - h - k) % 7
m = (a + 11 * h + 22 * l) // 451
month = (h + l - 7 * m + 114) // 31
day = ((h + l - 7 * m + 114) % 31) + 1
return datetime.datetime(year, month, day)
@staticmethod
def calculate_thanksgiving(year):
fourth_thursday = 4
november_first = datetime.datetime(year, 11, 1)
day_of_week = november_first.weekday()
thanksgiving = november_first + datetime.timedelta(days=((fourth_thursday - day_of_week) % 7) + 21)
return thanksgiving
@staticmethod
def is_within_week_of(target_date, current_date):
start_of_week = target_date - datetime.timedelta(days=target_date.weekday())
end_of_week = start_of_week + datetime.timedelta(days=6)
return start_of_week <= current_date <= end_of_week
def update_holiday(self):
current_date = datetime.datetime.now()
year = current_date.year
holidays = {
"april_fools": (datetime.datetime(year, 4, 1), 1),
"christmas_week": (datetime.datetime(year, 12, 25), 2),
"cinco_de_mayo": (datetime.datetime(year, 5, 5), 3),
"easter_week": (self.calculate_easter(year), 4),
"fourth_of_july": (datetime.datetime(year, 7, 4), 5),
"halloween_week": (datetime.datetime(year, 10, 31), 6),
"new_years": (datetime.datetime(year, 1, 1), 7),
"st_patricks": (datetime.datetime(year, 3, 17), 8),
"thanksgiving_week": (self.calculate_thanksgiving(year), 9),
"valentines": (datetime.datetime(year, 2, 14), 10),
"world_frog_day": (datetime.datetime(year, 3, 20), 11)
}
for holiday, (date, theme_id) in holidays.items():
if holiday.endswith("_week"):
if self.is_within_week_of(date, current_date):
if theme_id != self.previous_theme_id:
update_holiday = threading.Thread(target=update_holiday_theme, args=(theme_id,))
update_holiday.start()
self.previous_theme_id = theme_id
return
elif current_date.date() == date.date():
if theme_id != self.previous_theme_id:
update_holiday = threading.Thread(target=update_holiday_theme, args=(theme_id,))
update_holiday.start()
self.previous_theme_id = theme_id
return
if self.previous_theme_id != 0:
update_holiday = threading.Thread(target=update_holiday_theme, args=(0,))
update_holiday.start()
self.previous_theme_id = 0
def update_holiday_theme(self, theme_id):
self.params_memory.put_int("CurrentHolidayTheme", theme_id)
self.params_memory.put_bool("FrogPilotTogglesUpdated", True)
time.sleep(1)
self.params_memory.put_bool("FrogPilotTogglesUpdated", False)