Add openpilot tests

This commit is contained in:
FrogAi
2024-03-06 14:58:47 -07:00
parent 2901597132
commit b39097a12d
259 changed files with 31176 additions and 12 deletions

View File

@@ -0,0 +1 @@
out/*

View File

@@ -0,0 +1,71 @@
import numpy as np
from openpilot.selfdrive.test.longitudinal_maneuvers.plant import Plant
class Maneuver:
def __init__(self, title, duration, **kwargs):
# Was tempted to make a builder class
self.distance_lead = kwargs.get("initial_distance_lead", 200.0)
self.speed = kwargs.get("initial_speed", 0.0)
self.lead_relevancy = kwargs.get("lead_relevancy", 0)
self.breakpoints = kwargs.get("breakpoints", [0.0, duration])
self.speed_lead_values = kwargs.get("speed_lead_values", [0.0 for i in range(len(self.breakpoints))])
self.prob_lead_values = kwargs.get("prob_lead_values", [1.0 for i in range(len(self.breakpoints))])
self.cruise_values = kwargs.get("cruise_values", [50.0 for i in range(len(self.breakpoints))])
self.only_lead2 = kwargs.get("only_lead2", False)
self.only_radar = kwargs.get("only_radar", False)
self.ensure_start = kwargs.get("ensure_start", False)
self.enabled = kwargs.get("enabled", True)
self.e2e = kwargs.get("e2e", False)
self.force_decel = kwargs.get("force_decel", False)
self.duration = duration
self.title = title
def evaluate(self):
plant = Plant(
lead_relevancy=self.lead_relevancy,
speed=self.speed,
distance_lead=self.distance_lead,
enabled=self.enabled,
only_lead2=self.only_lead2,
only_radar=self.only_radar,
e2e=self.e2e,
force_decel=self.force_decel,
)
valid = True
logs = []
while plant.current_time < self.duration:
speed_lead = np.interp(plant.current_time, self.breakpoints, self.speed_lead_values)
prob = np.interp(plant.current_time, self.breakpoints, self.prob_lead_values)
cruise = np.interp(plant.current_time, self.breakpoints, self.cruise_values)
log = plant.step(speed_lead, prob, cruise)
d_rel = log['distance_lead'] - log['distance'] if self.lead_relevancy else 200.
v_rel = speed_lead - log['speed'] if self.lead_relevancy else 0.
log['d_rel'] = d_rel
log['v_rel'] = v_rel
logs.append(np.array([plant.current_time,
log['distance'],
log['distance_lead'],
log['speed'],
speed_lead,
log['acceleration']]))
if d_rel < .4 and (self.only_radar or prob > 0.5):
print("Crashed!!!!")
valid = False
if self.ensure_start and log['v_rel'] > 0 and log['speeds'][-1] <= 0.1:
print('LongitudinalPlanner not starting!')
valid = False
if self.force_decel and log['speed'] > 1e-1 and log['acceleration'] > -0.04:
print('Not stopping with force decel')
valid = False
print("maneuver end", valid)
return valid, np.array(logs)

View File

@@ -0,0 +1,172 @@
#!/usr/bin/env python3
import time
import numpy as np
from cereal import log
import cereal.messaging as messaging
from openpilot.common.realtime import Ratekeeper, DT_MDL
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
class Plant:
messaging_initialized = False
def __init__(self, lead_relevancy=False, speed=0.0, distance_lead=2.0,
enabled=True, only_lead2=False, only_radar=False, e2e=False, force_decel=False):
self.rate = 1. / DT_MDL
if not Plant.messaging_initialized:
Plant.radar = messaging.pub_sock('radarState')
Plant.controls_state = messaging.pub_sock('controlsState')
Plant.car_state = messaging.pub_sock('carState')
Plant.plan = messaging.sub_sock('longitudinalPlan')
Plant.messaging_initialized = True
self.v_lead_prev = 0.0
self.distance = 0.
self.speed = speed
self.acceleration = 0.0
self.speeds = []
# lead car
self.lead_relevancy = lead_relevancy
self.distance_lead = distance_lead
self.enabled = enabled
self.only_lead2 = only_lead2
self.only_radar = only_radar
self.e2e = e2e
self.force_decel = force_decel
self.rk = Ratekeeper(self.rate, print_delay_threshold=100.0)
self.ts = 1. / self.rate
time.sleep(0.1)
self.sm = messaging.SubMaster(['longitudinalPlan'])
from openpilot.selfdrive.car.honda.values import CAR
from openpilot.selfdrive.car.honda.interface import CarInterface
self.planner = LongitudinalPlanner(CarInterface.get_non_essential_params(CAR.CIVIC), init_v=self.speed)
@property
def current_time(self):
return float(self.rk.frame) / self.rate
def step(self, v_lead=0.0, prob=1.0, v_cruise=50.):
# ******** publish a fake model going straight and fake calibration ********
# note that this is worst case for MPC, since model will delay long mpc by one time step
radar = messaging.new_message('radarState')
control = messaging.new_message('controlsState')
car_state = messaging.new_message('carState')
model = messaging.new_message('modelV2')
a_lead = (v_lead - self.v_lead_prev)/self.ts
self.v_lead_prev = v_lead
if self.lead_relevancy:
d_rel = np.maximum(0., self.distance_lead - self.distance)
v_rel = v_lead - self.speed
if self.only_radar:
status = True
elif prob > .5:
status = True
else:
status = False
else:
d_rel = 200.
v_rel = 0.
prob = 0.0
status = False
lead = log.RadarState.LeadData.new_message()
lead.dRel = float(d_rel)
lead.yRel = float(0.0)
lead.vRel = float(v_rel)
lead.aRel = float(a_lead - self.acceleration)
lead.vLead = float(v_lead)
lead.vLeadK = float(v_lead)
lead.aLeadK = float(a_lead)
# TODO use real radard logic for this
lead.aLeadTau = float(_LEAD_ACCEL_TAU)
lead.status = status
lead.modelProb = float(prob)
if not self.only_lead2:
radar.radarState.leadOne = lead
radar.radarState.leadTwo = lead
# Simulate model predicting slightly faster speed
# this is to ensure lead policy is effective when model
# does not predict slowdown in e2e mode
position = log.XYZTData.new_message()
position.x = [float(x) for x in (self.speed + 0.5) * np.array(ModelConstants.T_IDXS)]
model.modelV2.position = position
velocity = log.XYZTData.new_message()
velocity.x = [float(x) for x in (self.speed + 0.5) * np.ones_like(ModelConstants.T_IDXS)]
model.modelV2.velocity = velocity
acceleration = log.XYZTData.new_message()
acceleration.x = [float(x) for x in np.zeros_like(ModelConstants.T_IDXS)]
model.modelV2.acceleration = acceleration
control.controlsState.longControlState = LongCtrlState.pid if self.enabled else LongCtrlState.off
control.controlsState.vCruise = float(v_cruise * 3.6)
control.controlsState.experimentalMode = self.e2e
control.controlsState.forceDecel = self.force_decel
car_state.carState.vEgo = float(self.speed)
car_state.carState.standstill = self.speed < 0.01
# ******** get controlsState messages for plotting ***
sm = {'radarState': radar.radarState,
'carState': car_state.carState,
'controlsState': control.controlsState,
'modelV2': model.modelV2}
self.planner.update(sm)
self.speed = self.planner.v_desired_filter.x
self.acceleration = self.planner.a_desired
self.speeds = self.planner.v_desired_trajectory.tolist()
fcw = self.planner.fcw
self.distance_lead = self.distance_lead + v_lead * self.ts
# ******** run the car ********
#print(self.distance, speed)
if self.speed <= 0:
self.speed = 0
self.acceleration = 0
self.distance = self.distance + self.speed * self.ts
# *** radar model ***
if self.lead_relevancy:
d_rel = np.maximum(0., self.distance_lead - self.distance)
v_rel = v_lead - self.speed
else:
d_rel = 200.
v_rel = 0.
# print at 5hz
# if (self.rk.frame % (self.rate // 5)) == 0:
# print("%2.2f sec %6.2f m %6.2f m/s %6.2f m/s2 lead_rel: %6.2f m %6.2f m/s"
# % (self.current_time, self.distance, self.speed, self.acceleration, d_rel, v_rel))
# ******** update prevs ********
self.rk.monitor_time()
return {
"distance": self.distance,
"speed": self.speed,
"acceleration": self.acceleration,
"speeds": self.speeds,
"distance_lead": self.distance_lead,
"fcw": fcw,
}
# simple engage in standalone mode
def plant_thread():
plant = Plant()
while 1:
plant.step()
if __name__ == "__main__":
plant_thread()

View File

@@ -0,0 +1,160 @@
#!/usr/bin/env python3
import itertools
import unittest
from parameterized import parameterized_class
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import STOP_DISTANCE
from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver
# TODO: make new FCW tests
def create_maneuvers(kwargs):
maneuvers = [
Maneuver(
'approach stopped car at 25m/s, initial distance: 120m',
duration=20.,
initial_speed=25.,
lead_relevancy=True,
initial_distance_lead=120.,
speed_lead_values=[30., 0.],
breakpoints=[0., 1.],
**kwargs,
),
Maneuver(
'approach stopped car at 20m/s, initial distance 90m',
duration=20.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=90.,
speed_lead_values=[20., 0.],
breakpoints=[0., 1.],
**kwargs,
),
Maneuver(
'steady state following a car at 20m/s, then lead decel to 0mph at 1m/s^2',
duration=50.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=35.,
speed_lead_values=[20., 20., 0.],
breakpoints=[0., 15., 35.0],
**kwargs,
),
Maneuver(
'steady state following a car at 20m/s, then lead decel to 0mph at 2m/s^2',
duration=50.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=35.,
speed_lead_values=[20., 20., 0.],
breakpoints=[0., 15., 25.0],
**kwargs,
),
Maneuver(
'steady state following a car at 20m/s, then lead decel to 0mph at 3m/s^2',
duration=50.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=35.,
speed_lead_values=[20., 20., 0.],
breakpoints=[0., 15., 21.66],
**kwargs,
),
Maneuver(
'steady state following a car at 20m/s, then lead decel to 0mph at 3+m/s^2',
duration=40.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=35.,
speed_lead_values=[20., 20., 0.],
prob_lead_values=[0., 1., 1.],
cruise_values=[20., 20., 20.],
breakpoints=[2., 2.01, 8.8],
**kwargs,
),
Maneuver(
"approach stopped car at 20m/s, with prob_lead_values",
duration=30.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=120.,
speed_lead_values=[0.0, 0., 0.],
prob_lead_values=[0.0, 0., 1.],
cruise_values=[20., 20., 20.],
breakpoints=[0.0, 2., 2.01],
**kwargs,
),
Maneuver(
"approach slower cut-in car at 20m/s",
duration=20.,
initial_speed=20.,
lead_relevancy=True,
initial_distance_lead=50.,
speed_lead_values=[15., 15.],
breakpoints=[1., 11.],
only_lead2=True,
**kwargs,
),
Maneuver(
"stay stopped behind radar override lead",
duration=20.,
initial_speed=0.,
lead_relevancy=True,
initial_distance_lead=10.,
speed_lead_values=[0., 0.],
prob_lead_values=[0., 0.],
breakpoints=[1., 11.],
only_radar=True,
**kwargs,
),
Maneuver(
"NaN recovery",
duration=30.,
initial_speed=15.,
lead_relevancy=True,
initial_distance_lead=60.,
speed_lead_values=[0., 0., 0.0],
breakpoints=[1., 1.01, 11.],
cruise_values=[float("nan"), 15., 15.],
**kwargs,
),
Maneuver(
'cruising at 25 m/s while disabled',
duration=20.,
initial_speed=25.,
lead_relevancy=False,
enabled=False,
**kwargs,
),
]
if not kwargs['force_decel']:
# controls relies on planner commanding to move for stock-ACC resume spamming
maneuvers.append(Maneuver(
"resume from a stop",
duration=20.,
initial_speed=0.,
lead_relevancy=True,
initial_distance_lead=STOP_DISTANCE,
speed_lead_values=[0., 0., 2.],
breakpoints=[1., 10., 15.],
ensure_start=True,
**kwargs,
))
return maneuvers
@parameterized_class(("e2e", "force_decel"), itertools.product([True, False], repeat=2))
class LongitudinalControl(unittest.TestCase):
e2e: bool
force_decel: bool
def test_maneuver(self):
for maneuver in create_maneuvers({"e2e": self.e2e, "force_decel": self.force_decel}):
with self.subTest(title=maneuver.title, e2e=maneuver.e2e, force_decel=maneuver.force_decel):
print(maneuver.title, f'in {"e2e" if maneuver.e2e else "acc"} mode')
valid, _ = maneuver.evaluate()
self.assertTrue(valid)
if __name__ == "__main__":
unittest.main(failfast=True)