Add openpilot tests

This commit is contained in:
FrogAi
2024-03-06 14:58:47 -07:00
parent 2901597132
commit b39097a12d
259 changed files with 31176 additions and 12 deletions

View File

@@ -0,0 +1,115 @@
import ast
import pathlib
import sys
import unittest
import numpy as np
from PIL import Image
from tinygrad.helpers import getenv
from tinygrad.tensor import Tensor
from models.efficientnet import EfficientNet
from models.vit import ViT
from models.resnet import ResNet50
def _load_labels():
labels_filename = pathlib.Path(__file__).parent / 'efficientnet/imagenet1000_clsidx_to_labels.txt'
return ast.literal_eval(labels_filename.read_text())
_LABELS = _load_labels()
def preprocess(img, new=False):
# preprocess image
aspect_ratio = img.size[0] / img.size[1]
img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0))))
img = np.array(img)
y0, x0 =(np.asarray(img.shape)[:2] - 224) // 2
img = img[y0: y0 + 224, x0: x0 + 224]
# low level preprocess
if new:
img = img.astype(np.float32)
img -= [127.0, 127.0, 127.0]
img /= [128.0, 128.0, 128.0]
img = img[None]
else:
img = np.moveaxis(img, [2, 0, 1], [0, 1, 2])
img = img.astype(np.float32)[:3].reshape(1, 3, 224, 224)
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape((1, -1, 1, 1))
img /= np.array([0.229, 0.224, 0.225]).reshape((1, -1, 1, 1))
return img
def _infer(model: EfficientNet, img, bs=1):
Tensor.training = False
img = preprocess(img)
# run the net
if bs > 1: img = img.repeat(bs, axis=0)
out = model.forward(Tensor(img)).cpu()
return _LABELS[np.argmax(out.numpy()[0])]
chicken_img = Image.open(pathlib.Path(__file__).parent / 'efficientnet/Chicken.jpg')
car_img = Image.open(pathlib.Path(__file__).parent / 'efficientnet/car.jpg')
class TestEfficientNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = EfficientNet(number=getenv("NUM"))
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
label = _infer(self.model, chicken_img)
self.assertEqual(label, "hen")
def test_chicken_bigbatch(self):
label = _infer(self.model, chicken_img, 2)
self.assertEqual(label, "hen")
def test_car(self):
label = _infer(self.model, car_img)
self.assertEqual(label, "sports car, sport car")
class TestViT(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ViT()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
label = _infer(self.model, chicken_img)
self.assertEqual(label, "cock")
def test_car(self):
label = _infer(self.model, car_img)
self.assertEqual(label, "racer, race car, racing car")
class TestResNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ResNet50()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
label = _infer(self.model, chicken_img)
self.assertEqual(label, "hen")
def test_car(self):
label = _infer(self.model, car_img)
self.assertEqual(label, "sports car, sport car")
if __name__ == '__main__':
unittest.main()