wip
This commit is contained in:
@@ -6,7 +6,6 @@ import numpy as np
|
||||
import cereal.messaging as messaging
|
||||
from cereal import car, log
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional
|
||||
from setproctitle import setproctitle
|
||||
from cereal.messaging import PubMaster, SubMaster
|
||||
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
|
||||
@@ -14,6 +13,7 @@ from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.common.filter_simple import FirstOrderFilter
|
||||
from openpilot.common.realtime import config_realtime_process
|
||||
from openpilot.common.transformations.camera import DEVICE_CAMERAS
|
||||
from openpilot.common.transformations.model import get_warp_matrix
|
||||
from openpilot.selfdrive import sentry
|
||||
from openpilot.selfdrive.car.car_helpers import get_demo_car_params
|
||||
@@ -24,15 +24,18 @@ from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
|
||||
|
||||
from openpilot.selfdrive.frogpilot.functions.frogpilot_functions import DEFAULT_MODEL
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, MODELS_PATH, NAVIGATIONLESS_MODELS, RADARLESS_MODELS
|
||||
|
||||
PROCESS_NAME = "selfdrive.modeld.modeld"
|
||||
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
||||
|
||||
MODEL_NAME = Params().get("Model", encoding='utf-8')
|
||||
|
||||
DISABLE_NAV = MODEL_NAME in NAVIGATIONLESS_MODELS
|
||||
DISABLE_RADAR = MODEL_NAME in RADARLESS_MODELS
|
||||
|
||||
MODEL_PATHS = {
|
||||
ModelRunner.THNEED: Path(__file__).parent / ('models/supercombo.thneed' if MODEL_NAME == DEFAULT_MODEL else f'models/models/{MODEL_NAME}.thneed'),
|
||||
ModelRunner.THNEED: Path(__file__).parent / ('models/supercombo.thneed' if MODEL_NAME == DEFAULT_MODEL else f'{MODELS_PATH}/{MODEL_NAME}.thneed'),
|
||||
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
|
||||
|
||||
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
|
||||
@@ -49,7 +52,7 @@ class FrameMeta:
|
||||
class ModelState:
|
||||
frame: ModelFrame
|
||||
wide_frame: ModelFrame
|
||||
inputs: Dict[str, np.ndarray]
|
||||
inputs: dict[str, np.ndarray]
|
||||
output: np.ndarray
|
||||
prev_desire: np.ndarray # for tracking the rising edge of the pulse
|
||||
model: ModelRunner
|
||||
@@ -63,9 +66,10 @@ class ModelState:
|
||||
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
|
||||
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
|
||||
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
|
||||
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
|
||||
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
|
||||
**({'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
|
||||
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)} if not DISABLE_NAV else {}),
|
||||
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
|
||||
**({'radar_tracks': np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)} if DISABLE_RADAR else {}),
|
||||
}
|
||||
|
||||
with open(METADATA_PATH, 'rb') as f:
|
||||
@@ -82,14 +86,14 @@ class ModelState:
|
||||
for k,v in self.inputs.items():
|
||||
self.model.addInput(k, v)
|
||||
|
||||
def slice_outputs(self, model_outputs: np.ndarray) -> Dict[str, np.ndarray]:
|
||||
def slice_outputs(self, model_outputs: np.ndarray) -> dict[str, np.ndarray]:
|
||||
parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
|
||||
if SEND_RAW_PRED:
|
||||
parsed_model_outputs['raw_pred'] = model_outputs.copy()
|
||||
return parsed_model_outputs
|
||||
|
||||
def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
|
||||
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[Dict[str, np.ndarray]]:
|
||||
inputs: dict[str, np.ndarray], prepare_only: bool) -> dict[str, np.ndarray] | None:
|
||||
# Model decides when action is completed, so desire input is just a pulse triggered on rising edge
|
||||
inputs['desire'][0] = 0
|
||||
self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:]
|
||||
@@ -98,8 +102,11 @@ class ModelState:
|
||||
|
||||
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
|
||||
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']
|
||||
self.inputs['nav_features'][:] = inputs['nav_features']
|
||||
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
|
||||
if not DISABLE_NAV:
|
||||
self.inputs['nav_features'][:] = inputs['nav_features']
|
||||
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
|
||||
if DISABLE_RADAR:
|
||||
self.inputs['radar_tracks'][:] = inputs['radar_tracks']
|
||||
|
||||
# if getCLBuffer is not None, frame will be None
|
||||
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
|
||||
@@ -158,7 +165,7 @@ def main(demo=False):
|
||||
|
||||
# messaging
|
||||
pm = PubMaster(["modelV2", "cameraOdometry"])
|
||||
sm = SubMaster(["carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "frogpilotPlan"])
|
||||
sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "liveTracks", "frogpilotPlan"])
|
||||
|
||||
publish_state = PublishState()
|
||||
params = Params()
|
||||
@@ -230,10 +237,11 @@ def main(demo=False):
|
||||
is_rhd = sm["driverMonitoringState"].isRHD
|
||||
frame_id = sm["roadCameraState"].frameId
|
||||
lateral_control_params = np.array([sm["carState"].vEgo, steer_delay], dtype=np.float32)
|
||||
if sm.updated["liveCalibration"]:
|
||||
if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']:
|
||||
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
|
||||
model_transform_main = get_warp_matrix(device_from_calib_euler, main_wide_camera, False).astype(np.float32)
|
||||
model_transform_extra = get_warp_matrix(device_from_calib_euler, True, True).astype(np.float32)
|
||||
dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))]
|
||||
model_transform_main = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics if main_wide_camera else dc.fcam.intrinsics, False).astype(np.float32)
|
||||
model_transform_extra = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics, True).astype(np.float32)
|
||||
live_calib_seen = True
|
||||
|
||||
traffic_convention = np.zeros(2)
|
||||
@@ -246,7 +254,7 @@ def main(demo=False):
|
||||
# Enable/disable nav features
|
||||
timestamp_llk = sm["navModel"].locationMonoTime
|
||||
nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9)
|
||||
nav_enabled = nav_valid and (params.get_bool("ExperimentalMode") or params.get_bool("NavChill"))
|
||||
nav_enabled = nav_valid and not DISABLE_NAV
|
||||
|
||||
if not nav_enabled:
|
||||
nav_features[:] = 0
|
||||
@@ -267,6 +275,14 @@ def main(demo=False):
|
||||
if 0 <= distance_idx < 50:
|
||||
nav_instructions[distance_idx*3 + direction_idx] = 1
|
||||
|
||||
radar_tracks = np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)
|
||||
if sm.updated["liveTracks"]:
|
||||
for i, track in enumerate(sm["liveTracks"]):
|
||||
if i >= ModelConstants.RADAR_TRACKS_LEN:
|
||||
break
|
||||
vec_index = i * ModelConstants.RADAR_TRACKS_WIDTH
|
||||
radar_tracks[vec_index:vec_index+ModelConstants.RADAR_TRACKS_WIDTH] = [track.dRel, track.yRel, track.vRel]
|
||||
|
||||
# tracked dropped frames
|
||||
vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
|
||||
frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
|
||||
@@ -280,12 +296,13 @@ def main(demo=False):
|
||||
if prepare_only:
|
||||
cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames")
|
||||
|
||||
inputs:Dict[str, np.ndarray] = {
|
||||
inputs:dict[str, np.ndarray] = {
|
||||
'desire': vec_desire,
|
||||
'traffic_convention': traffic_convention,
|
||||
'lateral_control_params': lateral_control_params,
|
||||
'nav_features': nav_features,
|
||||
'nav_instructions': nav_instructions}
|
||||
**({'nav_features': nav_features, 'nav_instructions': nav_instructions} if not DISABLE_NAV else {}),
|
||||
**({'radar_tracks': radar_tracks,} if DISABLE_RADAR else {}),
|
||||
}
|
||||
|
||||
mt1 = time.perf_counter()
|
||||
model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)
|
||||
|
||||
Reference in New Issue
Block a user