wip
This commit is contained in:
0
selfdrive/modeld/tests/__init__.py
Normal file
0
selfdrive/modeld/tests/__init__.py
Normal file
101
selfdrive/modeld/tests/dmon_lag/repro.cc
Normal file
101
selfdrive/modeld/tests/dmon_lag/repro.cc
Normal file
@@ -0,0 +1,101 @@
|
||||
// clang++ -O2 repro.cc && ./a.out
|
||||
|
||||
#include <sched.h>
|
||||
#include <sys/types.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
|
||||
static inline double millis_since_boot() {
|
||||
struct timespec t;
|
||||
clock_gettime(CLOCK_BOOTTIME, &t);
|
||||
return t.tv_sec * 1000.0 + t.tv_nsec * 1e-6;
|
||||
}
|
||||
|
||||
#define MODEL_WIDTH 320
|
||||
#define MODEL_HEIGHT 640
|
||||
|
||||
// null function still breaks it
|
||||
#define input_lambda(x) x
|
||||
|
||||
// this is copied from models/dmonitoring.cc, and is the code that triggers the issue
|
||||
void inner(uint8_t *resized_buf, float *net_input_buf) {
|
||||
int resized_width = MODEL_WIDTH;
|
||||
int resized_height = MODEL_HEIGHT;
|
||||
|
||||
// one shot conversion, O(n) anyway
|
||||
// yuvframe2tensor, normalize
|
||||
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
|
||||
for (int c = 0; c < MODEL_WIDTH/2; c++) {
|
||||
// Y_ul
|
||||
net_input_buf[(c*MODEL_HEIGHT/2) + r] = input_lambda(resized_buf[(2*r*resized_width) + (2*c)]);
|
||||
// Y_ur
|
||||
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width) + (2*c+1)]);
|
||||
// Y_dl
|
||||
net_input_buf[(c*MODEL_HEIGHT/2) + r + ((MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c)]);
|
||||
// Y_dr
|
||||
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c+1)]);
|
||||
// U
|
||||
net_input_buf[(c*MODEL_HEIGHT/2) + r + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + (r*resized_width/2) + c]);
|
||||
// V
|
||||
net_input_buf[(c*MODEL_HEIGHT/2) + r + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + (r*resized_width/2) + c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float trial() {
|
||||
int resized_width = MODEL_WIDTH;
|
||||
int resized_height = MODEL_HEIGHT;
|
||||
|
||||
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
|
||||
|
||||
// allocate the buffers
|
||||
uint8_t *resized_buf = (uint8_t*)malloc(resized_width*resized_height*3/2);
|
||||
float *net_input_buf = (float*)malloc(yuv_buf_len*sizeof(float));
|
||||
printf("allocate -- %p 0x%x -- %p 0x%lx\n", resized_buf, resized_width*resized_height*3/2, net_input_buf, yuv_buf_len*sizeof(float));
|
||||
|
||||
// test for bad buffers
|
||||
static int CNT = 20;
|
||||
float avg = 0.0;
|
||||
for (int i = 0; i < CNT; i++) {
|
||||
double s4 = millis_since_boot();
|
||||
inner(resized_buf, net_input_buf);
|
||||
double s5 = millis_since_boot();
|
||||
avg += s5-s4;
|
||||
}
|
||||
avg /= CNT;
|
||||
|
||||
// once it's bad, it's reliably bad
|
||||
if (avg > 10) {
|
||||
printf("HIT %f\n", avg);
|
||||
printf("BAD\n");
|
||||
|
||||
for (int i = 0; i < 200; i++) {
|
||||
double s4 = millis_since_boot();
|
||||
inner(resized_buf, net_input_buf);
|
||||
double s5 = millis_since_boot();
|
||||
printf("%.2f ", s5-s4);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// don't free so we get a different buffer each time
|
||||
//free(resized_buf);
|
||||
//free(net_input_buf);
|
||||
|
||||
return avg;
|
||||
}
|
||||
|
||||
int main() {
|
||||
while (true) {
|
||||
float ret = trial();
|
||||
printf("got %f\n", ret);
|
||||
}
|
||||
}
|
||||
|
||||
1
selfdrive/modeld/tests/snpe_benchmark/.gitignore
vendored
Normal file
1
selfdrive/modeld/tests/snpe_benchmark/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
benchmark
|
||||
192
selfdrive/modeld/tests/snpe_benchmark/benchmark.cc
Normal file
192
selfdrive/modeld/tests/snpe_benchmark/benchmark.cc
Normal file
@@ -0,0 +1,192 @@
|
||||
#include <SNPE/SNPE.hpp>
|
||||
#include <SNPE/SNPEBuilder.hpp>
|
||||
#include <SNPE/SNPEFactory.hpp>
|
||||
#include <DlContainer/IDlContainer.hpp>
|
||||
#include <DlSystem/DlError.hpp>
|
||||
#include <DlSystem/ITensor.hpp>
|
||||
#include <DlSystem/ITensorFactory.hpp>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
int64_t timespecDiff(struct timespec *timeA_p, struct timespec *timeB_p) {
|
||||
return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
|
||||
}
|
||||
|
||||
void PrintErrorStringAndExit() {
|
||||
cout << "ERROR!" << endl;
|
||||
const char* const errStr = zdl::DlSystem::getLastErrorString();
|
||||
std::cerr << errStr << std::endl;
|
||||
std::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
zdl::DlSystem::Runtime_t checkRuntime() {
|
||||
static zdl::DlSystem::Version_t Version = zdl::SNPE::SNPEFactory::getLibraryVersion();
|
||||
static zdl::DlSystem::Runtime_t Runtime;
|
||||
std::cout << "SNPE Version: " << Version.asString().c_str() << std::endl; //Print Version number
|
||||
if (zdl::SNPE::SNPEFactory::isRuntimeAvailable(zdl::DlSystem::Runtime_t::DSP)) {
|
||||
std::cout << "Using DSP runtime" << std::endl;
|
||||
Runtime = zdl::DlSystem::Runtime_t::DSP;
|
||||
} else if (zdl::SNPE::SNPEFactory::isRuntimeAvailable(zdl::DlSystem::Runtime_t::GPU)) {
|
||||
std::cout << "Using GPU runtime" << std::endl;
|
||||
Runtime = zdl::DlSystem::Runtime_t::GPU;
|
||||
} else {
|
||||
std::cout << "Using cpu runtime" << std::endl;
|
||||
Runtime = zdl::DlSystem::Runtime_t::CPU;
|
||||
}
|
||||
return Runtime;
|
||||
}
|
||||
|
||||
void test(char *filename) {
|
||||
static zdl::DlSystem::Runtime_t runtime = checkRuntime();
|
||||
std::unique_ptr<zdl::DlContainer::IDlContainer> container;
|
||||
container = zdl::DlContainer::IDlContainer::open(filename);
|
||||
|
||||
if (!container) { PrintErrorStringAndExit(); }
|
||||
cout << "start build" << endl;
|
||||
std::unique_ptr<zdl::SNPE::SNPE> snpe;
|
||||
{
|
||||
snpe = NULL;
|
||||
zdl::SNPE::SNPEBuilder snpeBuilder(container.get());
|
||||
snpe = snpeBuilder.setOutputLayers({})
|
||||
.setRuntimeProcessor(runtime)
|
||||
.setUseUserSuppliedBuffers(false)
|
||||
//.setDebugMode(true)
|
||||
.build();
|
||||
if (!snpe) {
|
||||
cout << "ERROR!" << endl;
|
||||
const char* const errStr = zdl::DlSystem::getLastErrorString();
|
||||
std::cerr << errStr << std::endl;
|
||||
}
|
||||
cout << "ran snpeBuilder" << endl;
|
||||
}
|
||||
|
||||
const auto &strList_opt = snpe->getInputTensorNames();
|
||||
if (!strList_opt) throw std::runtime_error("Error obtaining input tensor names");
|
||||
|
||||
cout << "get input tensor names done" << endl;
|
||||
const auto &strList = *strList_opt;
|
||||
static zdl::DlSystem::TensorMap inputTensorMap;
|
||||
static zdl::DlSystem::TensorMap outputTensorMap;
|
||||
vector<std::unique_ptr<zdl::DlSystem::ITensor> > inputs;
|
||||
for (int i = 0; i < strList.size(); i++) {
|
||||
cout << "input name: " << strList.at(i) << endl;
|
||||
|
||||
const auto &inputDims_opt = snpe->getInputDimensions(strList.at(i));
|
||||
const auto &inputShape = *inputDims_opt;
|
||||
inputs.push_back(zdl::SNPE::SNPEFactory::getTensorFactory().createTensor(inputShape));
|
||||
inputTensorMap.add(strList.at(i), inputs[i].get());
|
||||
}
|
||||
|
||||
struct timespec start, end;
|
||||
cout << "**** starting benchmark ****" << endl;
|
||||
for (int i = 0; i < 50; i++) {
|
||||
clock_gettime(CLOCK_MONOTONIC, &start);
|
||||
int err = snpe->execute(inputTensorMap, outputTensorMap);
|
||||
assert(err == true);
|
||||
clock_gettime(CLOCK_MONOTONIC, &end);
|
||||
uint64_t timeElapsed = timespecDiff(&end, &start);
|
||||
printf("time: %f ms\n", timeElapsed*1.0/1e6);
|
||||
}
|
||||
}
|
||||
|
||||
void get_testframe(int index, std::unique_ptr<zdl::DlSystem::ITensor> &input) {
|
||||
FILE * pFile;
|
||||
string filepath="/data/ipt/quantize_samples/sample_input_"+std::to_string(index);
|
||||
pFile = fopen(filepath.c_str(), "rb");
|
||||
int length = 1*6*160*320*4;
|
||||
float * frame_buffer = new float[length/4]; // 32/8
|
||||
fread(frame_buffer, length, 1, pFile);
|
||||
// std::cout << *(frame_buffer+length/4-1) << std::endl;
|
||||
std::copy(frame_buffer, frame_buffer+(length/4), input->begin());
|
||||
fclose(pFile);
|
||||
}
|
||||
|
||||
void SaveITensor(const std::string& path, const zdl::DlSystem::ITensor* tensor)
|
||||
{
|
||||
std::ofstream os(path, std::ofstream::binary);
|
||||
if (!os)
|
||||
{
|
||||
std::cerr << "Failed to open output file for writing: " << path << "\n";
|
||||
std::exit(EXIT_FAILURE);
|
||||
}
|
||||
for ( auto it = tensor->cbegin(); it != tensor->cend(); ++it )
|
||||
{
|
||||
float f = *it;
|
||||
if (!os.write(reinterpret_cast<char*>(&f), sizeof(float)))
|
||||
{
|
||||
std::cerr << "Failed to write data to: " << path << "\n";
|
||||
std::exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void testrun(char* modelfile) {
|
||||
static zdl::DlSystem::Runtime_t runtime = checkRuntime();
|
||||
std::unique_ptr<zdl::DlContainer::IDlContainer> container;
|
||||
container = zdl::DlContainer::IDlContainer::open(modelfile);
|
||||
|
||||
if (!container) { PrintErrorStringAndExit(); }
|
||||
cout << "start build" << endl;
|
||||
std::unique_ptr<zdl::SNPE::SNPE> snpe;
|
||||
{
|
||||
snpe = NULL;
|
||||
zdl::SNPE::SNPEBuilder snpeBuilder(container.get());
|
||||
snpe = snpeBuilder.setOutputLayers({})
|
||||
.setRuntimeProcessor(runtime)
|
||||
.setUseUserSuppliedBuffers(false)
|
||||
//.setDebugMode(true)
|
||||
.build();
|
||||
if (!snpe) {
|
||||
cout << "ERROR!" << endl;
|
||||
const char* const errStr = zdl::DlSystem::getLastErrorString();
|
||||
std::cerr << errStr << std::endl;
|
||||
}
|
||||
cout << "ran snpeBuilder" << endl;
|
||||
}
|
||||
|
||||
const auto &strList_opt = snpe->getInputTensorNames();
|
||||
if (!strList_opt) throw std::runtime_error("Error obtaining input tensor names");
|
||||
cout << "get input tensor names done" << endl;
|
||||
|
||||
const auto &strList = *strList_opt;
|
||||
static zdl::DlSystem::TensorMap inputTensorMap;
|
||||
static zdl::DlSystem::TensorMap outputTensorMap;
|
||||
|
||||
assert(strList.size() == 1);
|
||||
const auto &inputDims_opt = snpe->getInputDimensions(strList.at(0));
|
||||
const auto &inputShape = *inputDims_opt;
|
||||
std::cout << "winkwink" << std::endl;
|
||||
|
||||
for (int i=0; i<10000; i++) {
|
||||
std::unique_ptr<zdl::DlSystem::ITensor> input;
|
||||
input = zdl::SNPE::SNPEFactory::getTensorFactory().createTensor(inputShape);
|
||||
get_testframe(i, input);
|
||||
snpe->execute(input.get(), outputTensorMap);
|
||||
zdl::DlSystem::StringList tensorNames = outputTensorMap.getTensorNames();
|
||||
std::for_each(tensorNames.begin(), tensorNames.end(), [&](const char* name) {
|
||||
std::ostringstream path;
|
||||
path << "/data/opt/Result_" << std::to_string(i) << ".raw";
|
||||
auto tensorPtr = outputTensorMap.getTensor(name);
|
||||
SaveITensor(path.str(), tensorPtr);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 2) {
|
||||
printf("usage: %s <filename>\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (argc == 2) {
|
||||
while (true) test(argv[1]);
|
||||
} else if (argc == 3) {
|
||||
testrun(argv[1]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
4
selfdrive/modeld/tests/snpe_benchmark/benchmark.sh
Normal file
4
selfdrive/modeld/tests/snpe_benchmark/benchmark.sh
Normal file
@@ -0,0 +1,4 @@
|
||||
#!/bin/sh -e
|
||||
clang++ -I /data/openpilot/third_party/snpe/include/ -L/data/pythonpath/third_party/snpe/aarch64 -lSNPE benchmark.cc -o benchmark
|
||||
export LD_LIBRARY_PATH="/data/pythonpath/third_party/snpe/aarch64/:$HOME/openpilot/third_party/snpe/x86_64/:$LD_LIBRARY_PATH"
|
||||
exec ./benchmark $1
|
||||
107
selfdrive/modeld/tests/test_modeld.py
Normal file
107
selfdrive/modeld/tests/test_modeld.py
Normal file
@@ -0,0 +1,107 @@
|
||||
#!/usr/bin/env python3
|
||||
import unittest
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
import cereal.messaging as messaging
|
||||
from cereal.visionipc import VisionIpcServer, VisionStreamType
|
||||
from openpilot.common.transformations.camera import DEVICE_CAMERAS
|
||||
from openpilot.common.realtime import DT_MDL
|
||||
from openpilot.selfdrive.car.car_helpers import write_car_param
|
||||
from openpilot.selfdrive.manager.process_config import managed_processes
|
||||
from openpilot.selfdrive.test.process_replay.vision_meta import meta_from_camera_state
|
||||
|
||||
CAM = DEVICE_CAMERAS[("tici", "ar0231")].fcam
|
||||
IMG = np.zeros(int(CAM.width*CAM.height*(3/2)), dtype=np.uint8)
|
||||
IMG_BYTES = IMG.flatten().tobytes()
|
||||
|
||||
|
||||
class TestModeld(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self.vipc_server = VisionIpcServer("camerad")
|
||||
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_ROAD, 40, False, CAM.width, CAM.height)
|
||||
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_DRIVER, 40, False, CAM.width, CAM.height)
|
||||
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_WIDE_ROAD, 40, False, CAM.width, CAM.height)
|
||||
self.vipc_server.start_listener()
|
||||
write_car_param()
|
||||
|
||||
self.sm = messaging.SubMaster(['modelV2', 'cameraOdometry'])
|
||||
self.pm = messaging.PubMaster(['roadCameraState', 'wideRoadCameraState', 'liveCalibration'])
|
||||
|
||||
managed_processes['modeld'].start()
|
||||
self.pm.wait_for_readers_to_update("roadCameraState", 10)
|
||||
|
||||
def tearDown(self):
|
||||
managed_processes['modeld'].stop()
|
||||
del self.vipc_server
|
||||
|
||||
def _send_frames(self, frame_id, cams=None):
|
||||
if cams is None:
|
||||
cams = ('roadCameraState', 'wideRoadCameraState')
|
||||
|
||||
cs = None
|
||||
for cam in cams:
|
||||
msg = messaging.new_message(cam)
|
||||
cs = getattr(msg, cam)
|
||||
cs.frameId = frame_id
|
||||
cs.timestampSof = int((frame_id * DT_MDL) * 1e9)
|
||||
cs.timestampEof = int(cs.timestampSof + (DT_MDL * 1e9))
|
||||
cam_meta = meta_from_camera_state(cam)
|
||||
|
||||
self.pm.send(msg.which(), msg)
|
||||
self.vipc_server.send(cam_meta.stream, IMG_BYTES, cs.frameId,
|
||||
cs.timestampSof, cs.timestampEof)
|
||||
return cs
|
||||
|
||||
def _wait(self):
|
||||
self.sm.update(5000)
|
||||
if self.sm['modelV2'].frameId != self.sm['cameraOdometry'].frameId:
|
||||
self.sm.update(1000)
|
||||
|
||||
def test_modeld(self):
|
||||
for n in range(1, 500):
|
||||
cs = self._send_frames(n)
|
||||
self._wait()
|
||||
|
||||
mdl = self.sm['modelV2']
|
||||
self.assertEqual(mdl.frameId, n)
|
||||
self.assertEqual(mdl.frameIdExtra, n)
|
||||
self.assertEqual(mdl.timestampEof, cs.timestampEof)
|
||||
self.assertEqual(mdl.frameAge, 0)
|
||||
self.assertEqual(mdl.frameDropPerc, 0)
|
||||
|
||||
odo = self.sm['cameraOdometry']
|
||||
self.assertEqual(odo.frameId, n)
|
||||
self.assertEqual(odo.timestampEof, cs.timestampEof)
|
||||
|
||||
def test_dropped_frames(self):
|
||||
"""
|
||||
modeld should only run on consecutive road frames
|
||||
"""
|
||||
frame_id = -1
|
||||
road_frames = list()
|
||||
for n in range(1, 50):
|
||||
if (random.random() < 0.1) and n > 3:
|
||||
cams = random.choice([(), ('wideRoadCameraState', )])
|
||||
self._send_frames(n, cams)
|
||||
else:
|
||||
self._send_frames(n)
|
||||
road_frames.append(n)
|
||||
self._wait()
|
||||
|
||||
if len(road_frames) < 3 or road_frames[-1] - road_frames[-2] == 1:
|
||||
frame_id = road_frames[-1]
|
||||
|
||||
mdl = self.sm['modelV2']
|
||||
odo = self.sm['cameraOdometry']
|
||||
self.assertEqual(mdl.frameId, frame_id)
|
||||
self.assertEqual(mdl.frameIdExtra, frame_id)
|
||||
self.assertEqual(odo.frameId, frame_id)
|
||||
if n != frame_id:
|
||||
self.assertFalse(self.sm.updated['modelV2'])
|
||||
self.assertFalse(self.sm.updated['cameraOdometry'])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
2
selfdrive/modeld/tests/tf_test/build.sh
Normal file
2
selfdrive/modeld/tests/tf_test/build.sh
Normal file
@@ -0,0 +1,2 @@
|
||||
#!/bin/bash
|
||||
clang++ -I /home/batman/one/external/tensorflow/include/ -L /home/batman/one/external/tensorflow/lib -Wl,-rpath=/home/batman/one/external/tensorflow/lib main.cc -ltensorflow
|
||||
69
selfdrive/modeld/tests/tf_test/main.cc
Normal file
69
selfdrive/modeld/tests/tf_test/main.cc
Normal file
@@ -0,0 +1,69 @@
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include "tensorflow/c/c_api.h"
|
||||
|
||||
void* read_file(const char* path, size_t* out_len) {
|
||||
FILE* f = fopen(path, "r");
|
||||
if (!f) {
|
||||
return NULL;
|
||||
}
|
||||
fseek(f, 0, SEEK_END);
|
||||
long f_len = ftell(f);
|
||||
rewind(f);
|
||||
|
||||
char* buf = (char*)calloc(f_len, 1);
|
||||
assert(buf);
|
||||
|
||||
size_t num_read = fread(buf, f_len, 1, f);
|
||||
fclose(f);
|
||||
|
||||
if (num_read != 1) {
|
||||
free(buf);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (out_len) {
|
||||
*out_len = f_len;
|
||||
}
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
static void DeallocateBuffer(void* data, size_t) {
|
||||
free(data);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
TF_Buffer* buf;
|
||||
TF_Graph* graph;
|
||||
TF_Status* status;
|
||||
char *path = argv[1];
|
||||
|
||||
// load model
|
||||
{
|
||||
size_t model_size;
|
||||
char tmp[1024];
|
||||
snprintf(tmp, sizeof(tmp), "%s.pb", path);
|
||||
printf("loading model %s\n", tmp);
|
||||
uint8_t *model_data = (uint8_t *)read_file(tmp, &model_size);
|
||||
buf = TF_NewBuffer();
|
||||
buf->data = model_data;
|
||||
buf->length = model_size;
|
||||
buf->data_deallocator = DeallocateBuffer;
|
||||
printf("loaded model of size %d\n", model_size);
|
||||
}
|
||||
|
||||
// import graph
|
||||
status = TF_NewStatus();
|
||||
graph = TF_NewGraph();
|
||||
TF_ImportGraphDefOptions *opts = TF_NewImportGraphDefOptions();
|
||||
TF_GraphImportGraphDef(graph, buf, opts, status);
|
||||
TF_DeleteImportGraphDefOptions(opts);
|
||||
TF_DeleteBuffer(buf);
|
||||
if (TF_GetCode(status) != TF_OK) {
|
||||
printf("FAIL: %s\n", TF_Message(status));
|
||||
} else {
|
||||
printf("SUCCESS\n");
|
||||
}
|
||||
}
|
||||
8
selfdrive/modeld/tests/tf_test/pb_loader.py
Normal file
8
selfdrive/modeld/tests/tf_test/pb_loader.py
Normal file
@@ -0,0 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import tensorflow as tf
|
||||
|
||||
with open(sys.argv[1], "rb") as f:
|
||||
graph_def = tf.compat.v1.GraphDef()
|
||||
graph_def.ParseFromString(f.read())
|
||||
#tf.io.write_graph(graph_def, '', sys.argv[1]+".try")
|
||||
39
selfdrive/modeld/tests/timing/benchmark.py
Normal file
39
selfdrive/modeld/tests/timing/benchmark.py
Normal file
@@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env python3
|
||||
# type: ignore
|
||||
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
import cereal.messaging as messaging
|
||||
from openpilot.selfdrive.manager.process_config import managed_processes
|
||||
|
||||
|
||||
N = int(os.getenv("N", "5"))
|
||||
TIME = int(os.getenv("TIME", "30"))
|
||||
|
||||
if __name__ == "__main__":
|
||||
sock = messaging.sub_sock('modelV2', conflate=False, timeout=1000)
|
||||
|
||||
execution_times = []
|
||||
|
||||
for _ in range(N):
|
||||
os.environ['LOGPRINT'] = 'debug'
|
||||
managed_processes['modeld'].start()
|
||||
time.sleep(5)
|
||||
|
||||
t = []
|
||||
start = time.monotonic()
|
||||
while time.monotonic() - start < TIME:
|
||||
msgs = messaging.drain_sock(sock, wait_for_one=True)
|
||||
for m in msgs:
|
||||
t.append(m.modelV2.modelExecutionTime)
|
||||
|
||||
execution_times.append(np.array(t[10:]) * 1000)
|
||||
managed_processes['modeld'].stop()
|
||||
|
||||
print("\n\n")
|
||||
print(f"ran modeld {N} times for {TIME}s each")
|
||||
for _, t in enumerate(execution_times):
|
||||
print(f"\tavg: {sum(t)/len(t):0.2f}ms, min: {min(t):0.2f}ms, max: {max(t):0.2f}ms")
|
||||
print("\n\n")
|
||||
Reference in New Issue
Block a user