import numpy as np import cereal.messaging as messaging from cereal import log from openpilot.common.conversions import Conversions as CV from openpilot.common.numpy_fast import interp from openpilot.common.params import Params from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX from openpilot.selfdrive.controls.lib.desire_helper import LANE_CHANGE_SPEED_MIN from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import A_CHANGE_COST, J_EGO_COST, COMFORT_BRAKE, STOP_DISTANCE, get_jerk_factor, \ get_safe_obstacle_distance, get_stopped_equivalence_factor, get_T_FOLLOW from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, Lead, get_max_accel from openpilot.system.version import get_short_branch from openpilot.selfdrive.frogpilot.controls.lib.conditional_experimental_mode import ConditionalExperimentalMode from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import CITY_SPEED_LIMIT, CRUISING_SPEED, calculate_lane_width, calculate_road_curvature from openpilot.selfdrive.frogpilot.controls.lib.map_turn_speed_controller import MapTurnSpeedController from openpilot.selfdrive.frogpilot.controls.lib.model_manager import RADARLESS_MODELS from openpilot.selfdrive.frogpilot.controls.lib.speed_limit_controller import SpeedLimitController # Acceleration profiles - Credit goes to the DragonPilot team! # MPH = [0., 18, 36, 63, 94] A_CRUISE_MIN_BP_CUSTOM = [0., 8., 16., 28., 42.] # MPH = [0., 6.71, 13.4, 17.9, 24.6, 33.6, 44.7, 55.9, 67.1, 123] A_CRUISE_MAX_BP_CUSTOM = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.] A_CRUISE_MIN_VALS_ECO = [-0.001, -0.010, -0.28, -0.56, -0.56] A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30, .091] A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60] A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, .75, .6, .38, .2] TRAFFIC_MODE_BP = [0., CITY_SPEED_LIMIT] TARGET_LAT_A = 1.9 # m/s^2 def get_min_accel_eco(v_ego): return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_ECO) def get_max_accel_eco(v_ego): return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_ECO) def get_min_accel_sport(v_ego): return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_SPORT) def get_max_accel_sport(v_ego): return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_SPORT) class FrogPilotPlanner: def __init__(self, CP): self.CP = CP self.params = Params() self.params_memory = Params("/dev/shm/params") self.cem = ConditionalExperimentalMode() self.lead_one = Lead() self.mtsc = MapTurnSpeedController() self.release = get_short_branch() == "clearpilot" self.radarless_model = self.params.get("Model", encoding='utf-8') in RADARLESS_MODELS self.override_slc = False self.jerk = 0 self.overridden_speed = 0 self.mtsc_target = 0 self.slc_target = 0 self.t_follow = 0 self.vtsc_target = 0 def update(self, carState, controlsState, frogpilotCarControl, frogpilotNavigation, liveLocationKalman, modelData, radarState): v_cruise_kph = min(controlsState.vCruise, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS v_ego = max(carState.vEgo, 0) v_lead = self.lead_one.vLead if self.acceleration_profile == 1: self.max_accel = get_max_accel_eco(v_ego) elif self.acceleration_profile in (2, 3): self.max_accel = get_max_accel_sport(v_ego) elif not controlsState.experimentalMode: self.max_accel = get_max_accel(v_ego) else: self.max_accel = ACCEL_MAX v_cruise_changed = (self.mtsc_target or self.vtsc_target) < v_cruise if self.deceleration_profile == 1 and not v_cruise_changed: self.min_accel = get_min_accel_eco(v_ego) elif self.deceleration_profile == 2 and not v_cruise_changed: self.min_accel = get_min_accel_sport(v_ego) elif not controlsState.experimentalMode: self.min_accel = A_CRUISE_MIN else: self.min_accel = ACCEL_MIN check_lane_width = self.adjacent_lanes or self.blind_spot_path or self.lane_detection if check_lane_width and v_ego >= LANE_CHANGE_SPEED_MIN: self.lane_width_left = float(calculate_lane_width(modelData.laneLines[0], modelData.laneLines[1], modelData.roadEdges[0])) self.lane_width_right = float(calculate_lane_width(modelData.laneLines[3], modelData.laneLines[2], modelData.roadEdges[1])) else: self.lane_width_left = 0 self.lane_width_right = 0 road_curvature = calculate_road_curvature(modelData, v_ego) if self.lead_one.status and self.CP.openpilotLongitudinalControl: base_jerk = get_jerk_factor(self.custom_personalities, self.aggressive_jerk, self.standard_jerk, self.relaxed_jerk, controlsState.personality) base_t_follow = get_T_FOLLOW(self.custom_personalities, self.aggressive_follow, self.standard_follow, self.relaxed_follow, controlsState.personality) self.safe_obstacle_distance = int(np.mean(get_safe_obstacle_distance(v_ego, self.t_follow))) self.safe_obstacle_distance_stock = int(np.mean(get_safe_obstacle_distance(v_ego, base_t_follow))) self.stopped_equivalence_factor = int(np.mean(get_stopped_equivalence_factor(v_lead))) self.jerk, self.t_follow = self.update_follow_values(base_jerk, self.lead_one, base_t_follow, frogpilotCarControl.trafficModeActive, v_ego, v_lead) else: self.safe_obstacle_distance = 0 self.safe_obstacle_distance_stock = 0 self.stopped_equivalence_factor = 0 self.t_follow = 1.45 self.v_cruise = self.update_v_cruise(carState, controlsState, controlsState.enabled, liveLocationKalman, modelData, road_curvature, v_cruise, v_ego) # clearpilot allow experimental on stock long if self.conditional_experimental_mode or self.green_light_alert: self.cem.update(carState, controlsState.enabled, frogpilotNavigation, self.lead_one, modelData, road_curvature, self.t_follow, v_ego) if self.radarless_model: model_leads = list(modelData.leadsV3) if len(model_leads) > 0: model_lead = model_leads[0] self.lead_one.update(model_lead.x[0], model_lead.y[0], model_lead.v[0], model_lead.a[0], model_lead.prob) else: self.lead_one.reset() else: self.lead_one = radarState.leadOne def update_follow_values(self, jerk, lead_one, t_follow, trafficModeActive, v_ego, v_lead): if trafficModeActive: jerk = interp(v_ego, TRAFFIC_MODE_BP, self.traffic_mode_jerk) t_follow = interp(v_ego, TRAFFIC_MODE_BP, self.traffic_mode_t_follow) stopping_distance = STOP_DISTANCE + max(self.increased_stopping_distance - v_ego if not trafficModeActive else 0, 0) lead_distance = self.lead_one.dRel + stopping_distance # Offset by FrogAi for FrogPilot for a more natural takeoff with a lead if self.aggressive_acceleration: distance_factor = np.maximum(1, lead_distance - (v_ego * t_follow)) standstill_offset = max(stopping_distance - v_ego, 0) acceleration_offset = np.clip((v_lead - v_ego) + standstill_offset - COMFORT_BRAKE, 1, distance_factor) jerk /= acceleration_offset t_follow /= acceleration_offset # Offset by FrogAi for FrogPilot for a more natural approach to a slower lead if self.smoother_braking: distance_factor = np.maximum(1, lead_distance - (v_lead * t_follow)) far_lead_offset = max(lead_distance - CITY_SPEED_LIMIT, 0) if self.smoother_braking_far_lead else 0 braking_offset = np.clip((v_ego - v_lead) + far_lead_offset - COMFORT_BRAKE, 1, distance_factor) if self.smoother_braking_jerk: jerk *= max(braking_offset**(1 / COMFORT_BRAKE), 1) t_follow /= braking_offset return jerk, t_follow def update_v_cruise(self, carState, controlsState, enabled, liveLocationKalman, modelData, road_curvature, v_cruise, v_ego): gps_check = (liveLocationKalman.status == log.LiveLocationKalman.Status.valid) and liveLocationKalman.positionGeodetic.valid and liveLocationKalman.gpsOK v_cruise_cluster = max(controlsState.vCruiseCluster, controlsState.vCruise) * CV.KPH_TO_MS v_cruise_diff = v_cruise_cluster - v_cruise v_ego_cluster = max(carState.vEgoCluster, v_ego) v_ego_diff = v_ego_cluster - v_ego # Pfeiferj's Map Turn Speed Controller if self.map_turn_speed_controller and v_ego > CRUISING_SPEED and enabled and gps_check: mtsc_active = self.mtsc_target < v_cruise self.mtsc_target = np.clip(self.mtsc.target_speed(v_ego, carState.aEgo), CRUISING_SPEED, v_cruise) if self.mtsc_curvature_check and road_curvature < 1.0 and not mtsc_active: self.mtsc_target = v_cruise if self.mtsc_target == CRUISING_SPEED: self.mtsc_target = v_cruise else: self.mtsc_target = v_cruise # Pfeiferj's Speed Limit Controller if self.speed_limit_controller: SpeedLimitController.update(v_ego) unconfirmed_slc_target = SpeedLimitController.desired_speed_limit # Check if the new speed limit has been confirmed by the user if self.speed_limit_confirmation: if self.params_memory.get_bool("SLCConfirmed") or self.slc_target == 0: self.slc_target = unconfirmed_slc_target self.params_memory.put_bool("SLCConfirmed", False) else: self.slc_target = unconfirmed_slc_target # Override SLC upon gas pedal press and reset upon brake/cancel button self.override_slc &= self.overridden_speed > self.slc_target self.override_slc |= carState.gasPressed and v_ego > self.slc_target self.override_slc &= enabled # Use the override speed if SLC is being overridden if self.override_slc: if self.speed_limit_controller_override == 1: # Set the speed limit to the manual set speed if carState.gasPressed: self.overridden_speed = v_ego + v_ego_diff self.overridden_speed = np.clip(self.overridden_speed, self.slc_target, v_cruise + v_cruise_diff) elif self.speed_limit_controller_override == 2: # Set the speed limit to the max set speed self.overridden_speed = v_cruise + v_cruise_diff else: self.overridden_speed = 0 else: self.slc_target = v_cruise # Pfeiferj's Vision Turn Controller if self.vision_turn_controller and v_ego > CRUISING_SPEED and enabled: orientation_rate = np.array(np.abs(modelData.orientationRate.z)) * self.curve_sensitivity velocity = np.array(modelData.velocity.x) max_pred_lat_acc = np.amax(orientation_rate * velocity) max_curve = max_pred_lat_acc / (v_ego**2) adjusted_target_lat_a = TARGET_LAT_A * self.turn_aggressiveness self.vtsc_target = (adjusted_target_lat_a / max_curve)**0.5 self.vtsc_target = np.clip(self.vtsc_target, CRUISING_SPEED, v_cruise) else: self.vtsc_target = v_cruise targets = [self.mtsc_target, max(self.overridden_speed, self.slc_target) - v_ego_diff, self.vtsc_target] filtered_targets = [target if target > CRUISING_SPEED else v_cruise for target in targets] return min(filtered_targets) def publish(self, sm, pm): frogpilot_plan_send = messaging.new_message('frogpilotPlan') frogpilot_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState']) frogpilotPlan = frogpilot_plan_send.frogpilotPlan frogpilotPlan.accelerationJerk = A_CHANGE_COST * (float(self.jerk) if self.lead_one.status else 1) frogpilotPlan.accelerationJerkStock = A_CHANGE_COST # clearpilot: adjustedcruise is the max speed based on vision turn speed control (eval) frogpilotPlan.adjustedCruise = float(min(self.mtsc_target, self.vtsc_target) * (CV.MS_TO_KPH if self.is_metric else CV.MS_TO_MPH)) frogpilotPlan.conditionalExperimental = self.cem.experimental_mode frogpilotPlan.desiredFollowDistance = self.safe_obstacle_distance - self.stopped_equivalence_factor frogpilotPlan.egoJerk = J_EGO_COST * (float(self.jerk) if self.lead_one.status else 1) frogpilotPlan.egoJerkStock = J_EGO_COST frogpilotPlan.jerk = float(self.jerk) frogpilotPlan.safeObstacleDistance = self.safe_obstacle_distance frogpilotPlan.safeObstacleDistanceStock = self.safe_obstacle_distance_stock frogpilotPlan.stoppedEquivalenceFactor = self.stopped_equivalence_factor frogpilotPlan.laneWidthLeft = self.lane_width_left frogpilotPlan.laneWidthRight = self.lane_width_right frogpilotPlan.minAcceleration = self.min_accel frogpilotPlan.maxAcceleration = self.max_accel frogpilotPlan.tFollow = float(self.t_follow) frogpilotPlan.vCruise = float(self.v_cruise) frogpilotPlan.redLight = self.cem.red_light_detected frogpilotPlan.slcOverridden = bool(self.override_slc) frogpilotPlan.slcOverriddenSpeed = float(self.overridden_speed) frogpilotPlan.slcSpeedLimit = self.slc_target frogpilotPlan.slcSpeedLimitOffset = SpeedLimitController.offset frogpilotPlan.unconfirmedSlcSpeedLimit = SpeedLimitController.desired_speed_limit frogpilotPlan.vtscControllingCurve = bool(self.mtsc_target > self.vtsc_target) self.params_memory.put_int("SpeedLimitVTSC", frogpilotPlan.adjustedCruise) pm.send('frogpilotPlan', frogpilot_plan_send) def update_frogpilot_params(self): self.is_metric = self.params.get_bool("IsMetric") # clearpilot allow experimental in stock long self.conditional_experimental_mode = self.params.get_bool("ConditionalExperimental") if self.conditional_experimental_mode: self.cem.update_frogpilot_params() custom_alerts = self.params.get_bool("CustomAlerts") self.green_light_alert = custom_alerts and self.params.get_bool("GreenLightAlert") self.custom_personalities = self.params.get_bool("CustomPersonalities") self.aggressive_jerk = self.params.get_float("AggressiveJerk") self.aggressive_follow = self.params.get_float("AggressiveFollow") self.standard_jerk = self.params.get_float("StandardJerk") self.standard_follow = self.params.get_float("StandardFollow") self.relaxed_jerk = self.params.get_float("RelaxedJerk") self.relaxed_follow = self.params.get_float("RelaxedFollow") self.traffic_jerk = self.params.get_float("TrafficJerk") self.traffic_follow = self.params.get_float("TrafficFollow") self.traffic_mode_jerk = [self.traffic_jerk, self.aggressive_jerk] if self.custom_personalities and not self.release else [1.0, 0.5] self.traffic_mode_t_follow = [self.traffic_follow, self.aggressive_follow] if self.custom_personalities and not self.release else [0.5, 1.0] custom_ui = self.params.get_bool("CustomUI") self.adjacent_lanes = custom_ui and self.params.get_bool("AdjacentPath") self.blind_spot_path = custom_ui and self.params.get_bool("BlindSpotPath") nudgeless_lane_change = self.params.get_bool("NudgelessLaneChange") self.lane_detection = nudgeless_lane_change and self.params.get_int("LaneDetectionWidth") != 0 longitudinal_tune = self.CP.openpilotLongitudinalControl and self.params.get_bool("LongitudinalTune") self.acceleration_profile = self.params.get_int("AccelerationProfile") if longitudinal_tune else 0 self.deceleration_profile = self.params.get_int("DecelerationProfile") if longitudinal_tune else 0 self.aggressive_acceleration = longitudinal_tune and self.params.get_bool("AggressiveAcceleration") self.increased_stopping_distance = self.params.get_int("StoppingDistance") * (1 if self.is_metric else CV.FOOT_TO_METER) if longitudinal_tune else 0 self.smoother_braking = longitudinal_tune and self.params.get_bool("SmoothBraking") self.smoother_braking_far_lead = self.smoother_braking and self.params.get_bool("SmoothBrakingFarLead") and not self.release self.smoother_braking_jerk = self.smoother_braking and self.params.get_bool("SmoothBrakingJerk") and not self.release self.map_turn_speed_controller = self.params.get_bool("MTSCEnabled") self.mtsc_curvature_check = self.map_turn_speed_controller and self.params.get_bool("MTSCCurvatureCheck") self.params_memory.put_float("MapTargetLatA", 2 * (self.params.get_int("MTSCAggressiveness") / 100)) self.speed_limit_controller = self.CP.openpilotLongitudinalControl and self.params.get_bool("SpeedLimitController") self.speed_limit_confirmation = self.speed_limit_controller and self.params.get_bool("SLCConfirmation") self.speed_limit_controller_override = self.speed_limit_controller and self.params.get_int("SLCOverride") self.vision_turn_controller = self.params.get_bool("VisionTurnControl") self.curve_sensitivity = self.params.get_int("CurveSensitivity") / 100 if self.vision_turn_controller else 1 self.turn_aggressiveness = self.params.get_int("TurnAggressiveness") / 100 if self.vision_turn_controller else 1