import numpy as np from openpilot.common.numpy_fast import interp from openpilot.common.params import Params from openpilot.system.hardware import HARDWARE params_memory = Params("/dev/shm/params") CITY_SPEED_LIMIT = 25 CRUISING_SPEED = 5 # Roughly the speed cars go when not touching the gas while in drive PROBABILITY = 0.6 # 60% chance of condition being true THRESHOLD = 5 # Time threshold (0.25s) # Acceleration profiles - Credit goes to the DragonPilot team! # MPH = [0., 18, 36, 63, 94] A_CRUISE_MIN_BP_CUSTOM = [0., 8., 16., 28., 42.] # MPH = [0., 6.71, 13.4, 17.9, 24.6, 33.6, 44.7, 55.9, 67.1, 123] A_CRUISE_MAX_BP_CUSTOM = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.] A_CRUISE_MIN_VALS_ECO = [-0.001, -0.010, -0.28, -0.56, -0.56] A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30, .091] A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60] A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, .75, .6, .38, .2] class MovingAverageCalculator: def __init__(self): self.data = [] self.total = 0 def add_data(self, value): if len(self.data) == THRESHOLD: self.total -= self.data.pop(0) self.data.append(value) self.total += value def get_moving_average(self): if len(self.data) == 0: return None return self.total / len(self.data) def reset_data(self): self.data = [] self.total = 0 class FrogPilotFunctions: def __init__(self) -> None: self.params = Params() @staticmethod def get_min_accel_eco(v_ego): return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_ECO) @staticmethod def get_max_accel_eco(v_ego): return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_ECO) @staticmethod def get_min_accel_sport(v_ego): return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_SPORT) @staticmethod def get_max_accel_sport(v_ego): return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_SPORT) @staticmethod def calculate_lane_width(lane, current_lane, road_edge): lane_x, lane_y = np.array(lane.x), np.array(lane.y) edge_x, edge_y = np.array(road_edge.x), np.array(road_edge.y) current_x, current_y = np.array(current_lane.x), np.array(current_lane.y) lane_y_interp = np.interp(current_x, lane_x[lane_x.argsort()], lane_y[lane_x.argsort()]) road_edge_y_interp = np.interp(current_x, edge_x[edge_x.argsort()], edge_y[edge_x.argsort()]) distance_to_lane = np.mean(np.abs(current_y - lane_y_interp)) distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp)) return min(distance_to_lane, distance_to_road_edge) @staticmethod def update_cestatus_distance(self): # Set "CEStatus" to work with "Conditional Experimental Mode" conditional_status = params_memory.get_int("CEStatus") override_value = 0 if conditional_status in (1, 2, 3, 4, 5, 6) else 3 if conditional_status >= 7 else 4 params_memory.put_int("CEStatus", override_value) @staticmethod def update_cestatus_lkas(self): # Set "CEStatus" to work with "Conditional Experimental Mode" conditional_status = params_memory.get_int("CEStatus") override_value = 0 if conditional_status in (1, 2, 3, 4, 5, 6) else 5 if conditional_status >= 7 else 6 params_memory.put_int("CEStatus", override_value) def update_experimental_mode(self): experimental_mode = self.params.get_bool("ExperimentalMode") # Invert the value of "ExperimentalMode" self.params.put_bool("ExperimentalMode", not experimental_mode) @staticmethod def road_curvature(modelData, v_ego): predicted_velocities = np.array(modelData.velocity.x) curvature_ratios = np.abs(np.array(modelData.acceleration.y)) / (predicted_velocities**2) return np.amax(curvature_ratios * (v_ego**2))