import cereal.messaging as messaging from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX from openpilot.selfdrive.controls.lib.desire_helper import LANE_CHANGE_SPEED_MIN from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import STOP_DISTANCE from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, get_max_accel from openpilot.selfdrive.frogpilot.functions.frogpilot_functions import CRUISING_SPEED, FrogPilotFunctions from openpilot.selfdrive.frogpilot.functions.conditional_experimental_mode import ConditionalExperimentalMode class FrogPilotPlanner: def __init__(self, CP, params, params_memory): self.CP = CP self.params_memory = params_memory self.fpf = FrogPilotFunctions() self.cem = ConditionalExperimentalMode(self.params_memory) self.road_curvature = 0 self.stop_distance = 0 self.v_cruise = 0 self.accel_limits = [A_CRUISE_MIN, get_max_accel(0)] self.update_frogpilot_params(params) def update(self, carState, controlsState, modelData, mpc, sm, v_cruise, v_ego): enabled = controlsState.enabled # Configure the deceleration profile if self.deceleration_profile == 1: min_accel = self.fpf.get_min_accel_eco(v_ego) elif self.deceleration_profile == 2: min_accel = self.fpf.get_min_accel_sport(v_ego) elif mpc.mode == 'acc': min_accel = A_CRUISE_MIN else: min_accel = ACCEL_MIN # Configure the acceleration profile if self.acceleration_profile == 1: max_accel = self.fpf.get_max_accel_eco(v_ego) elif self.acceleration_profile in (2, 3): max_accel = self.fpf.get_max_accel_sport(v_ego) elif mpc.mode == 'acc': max_accel = get_max_accel(v_ego) else: max_accel = ACCEL_MAX self.accel_limits = [min_accel, max_accel] # Update Conditional Experimental Mode if self.conditional_experimental_mode and self.CP.openpilotLongitudinalControl or self.green_light_alert and carState.standstill: self.cem.update(carState, enabled, sm['frogpilotNavigation'], modelData, sm['radarState'], self.road_curvature, self.stop_distance, mpc.t_follow, v_ego) # Update the current lane widths check_lane_width = self.adjacent_lanes or self.blind_spot_path if check_lane_width and v_ego >= LANE_CHANGE_SPEED_MIN: self.lane_width_left = float(self.fpf.calculate_lane_width(modelData.laneLines[0], modelData.laneLines[1], modelData.roadEdges[0])) self.lane_width_right = float(self.fpf.calculate_lane_width(modelData.laneLines[3], modelData.laneLines[2], modelData.roadEdges[1])) else: self.lane_width_left = 0 self.lane_width_right = 0 # Update the current road curvature self.road_curvature = self.fpf.road_curvature(modelData, v_ego) # Update the desired stopping distance self.stop_distance = STOP_DISTANCE # Update the max allowed speed self.v_cruise = self.update_v_cruise(carState, controlsState, enabled, modelData, v_cruise, v_ego) def update_v_cruise(self, carState, controlsState, enabled, modelData, v_cruise, v_ego): # Offsets to adjust the max speed to match the cluster v_ego_cluster = max(carState.vEgoCluster, v_ego) v_ego_diff = v_ego_cluster - v_ego v_cruise_cluster = max(controlsState.vCruiseCluster, controlsState.vCruise) * CV.KPH_TO_MS v_cruise_diff = v_cruise_cluster - v_cruise targets = [] filtered_targets = [target for target in targets if target > CRUISING_SPEED] return min(filtered_targets) if filtered_targets else v_cruise def publish(self, sm, pm, mpc): frogpilot_plan_send = messaging.new_message('frogpilotPlan') frogpilot_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState']) frogpilotPlan = frogpilot_plan_send.frogpilotPlan frogpilotPlan.conditionalExperimental = self.cem.experimental_mode frogpilotPlan.desiredFollowDistance = mpc.safe_obstacle_distance - mpc.stopped_equivalence_factor frogpilotPlan.safeObstacleDistance = mpc.safe_obstacle_distance frogpilotPlan.safeObstacleDistanceStock = mpc.safe_obstacle_distance_stock frogpilotPlan.stoppedEquivalenceFactor = mpc.stopped_equivalence_factor frogpilotPlan.laneWidthLeft = self.lane_width_left frogpilotPlan.laneWidthRight = self.lane_width_right frogpilotPlan.redLight = self.cem.red_light_detected pm.send('frogpilotPlan', frogpilot_plan_send) def update_frogpilot_params(self, params): self.is_metric = params.get_bool("IsMetric") self.conditional_experimental_mode = params.get_bool("ConditionalExperimental") if self.conditional_experimental_mode: self.cem.update_frogpilot_params(self.is_metric, params) params.put_bool("ExperimentalMode", True) custom_alerts = params.get_bool("CustomAlerts") self.green_light_alert = custom_alerts and params.get_bool("GreenLightAlert") if self.green_light_alert and not self.conditional_experimental_mode: self.cem.update_frogpilot_params(self.is_metric, params) self.custom_personalities = params.get_bool("CustomPersonalities") self.aggressive_follow = params.get_float("AggressiveFollow") self.standard_follow = params.get_float("StandardFollow") self.relaxed_follow = params.get_float("RelaxedFollow") self.aggressive_jerk = params.get_float("AggressiveJerk") self.standard_jerk = params.get_float("StandardJerk") self.relaxed_jerk = params.get_float("RelaxedJerk") custom_ui = params.get_bool("CustomUI") self.adjacent_lanes = custom_ui and params.get_bool("AdjacentPath") self.blind_spot_path = custom_ui and params.get_bool("BlindSpotPath") longitudinal_tune = params.get_bool("LongitudinalTune") self.acceleration_profile = params.get_int("AccelerationProfile") if longitudinal_tune else 0 self.deceleration_profile = params.get_int("DecelerationProfile") if longitudinal_tune else 0 self.aggressive_acceleration = longitudinal_tune and params.get_bool("AggressiveAcceleration") self.increased_stopping_distance = params.get_int("StoppingDistance") * (1 if self.is_metric else CV.FOOT_TO_METER) if longitudinal_tune else 0