Added toggle to enable or disable Experimental Mode from the steering wheel or onroad UI.
107 lines
3.8 KiB
Python
107 lines
3.8 KiB
Python
import numpy as np
|
|
|
|
from openpilot.common.numpy_fast import interp
|
|
from openpilot.common.params import Params
|
|
from openpilot.system.hardware import HARDWARE
|
|
|
|
|
|
params_memory = Params("/dev/shm/params")
|
|
|
|
CITY_SPEED_LIMIT = 25
|
|
CRUISING_SPEED = 5 # Roughly the speed cars go when not touching the gas while in drive
|
|
PROBABILITY = 0.6 # 60% chance of condition being true
|
|
THRESHOLD = 5 # Time threshold (0.25s)
|
|
|
|
# Acceleration profiles - Credit goes to the DragonPilot team!
|
|
# MPH = [0., 18, 36, 63, 94]
|
|
A_CRUISE_MIN_BP_CUSTOM = [0., 8., 16., 28., 42.]
|
|
# MPH = [0., 6.71, 13.4, 17.9, 24.6, 33.6, 44.7, 55.9, 67.1, 123]
|
|
A_CRUISE_MAX_BP_CUSTOM = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.]
|
|
|
|
A_CRUISE_MIN_VALS_ECO = [-0.001, -0.010, -0.28, -0.56, -0.56]
|
|
A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30, .091]
|
|
|
|
A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60]
|
|
A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, .75, .6, .38, .2]
|
|
|
|
|
|
class MovingAverageCalculator:
|
|
def __init__(self):
|
|
self.data = []
|
|
self.total = 0
|
|
|
|
def add_data(self, value):
|
|
if len(self.data) == THRESHOLD:
|
|
self.total -= self.data.pop(0)
|
|
self.data.append(value)
|
|
self.total += value
|
|
|
|
def get_moving_average(self):
|
|
if len(self.data) == 0:
|
|
return None
|
|
return self.total / len(self.data)
|
|
|
|
def reset_data(self):
|
|
self.data = []
|
|
self.total = 0
|
|
|
|
|
|
class FrogPilotFunctions:
|
|
def __init__(self) -> None:
|
|
self.params = Params()
|
|
|
|
@staticmethod
|
|
def get_min_accel_eco(v_ego):
|
|
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_ECO)
|
|
|
|
@staticmethod
|
|
def get_max_accel_eco(v_ego):
|
|
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_ECO)
|
|
|
|
@staticmethod
|
|
def get_min_accel_sport(v_ego):
|
|
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_SPORT)
|
|
|
|
@staticmethod
|
|
def get_max_accel_sport(v_ego):
|
|
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_SPORT)
|
|
|
|
@staticmethod
|
|
def calculate_lane_width(lane, current_lane, road_edge):
|
|
lane_x, lane_y = np.array(lane.x), np.array(lane.y)
|
|
edge_x, edge_y = np.array(road_edge.x), np.array(road_edge.y)
|
|
current_x, current_y = np.array(current_lane.x), np.array(current_lane.y)
|
|
|
|
lane_y_interp = np.interp(current_x, lane_x[lane_x.argsort()], lane_y[lane_x.argsort()])
|
|
road_edge_y_interp = np.interp(current_x, edge_x[edge_x.argsort()], edge_y[edge_x.argsort()])
|
|
|
|
distance_to_lane = np.mean(np.abs(current_y - lane_y_interp))
|
|
distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp))
|
|
|
|
return min(distance_to_lane, distance_to_road_edge)
|
|
|
|
@staticmethod
|
|
def update_cestatus_distance(self):
|
|
# Set "CEStatus" to work with "Conditional Experimental Mode"
|
|
conditional_status = params_memory.get_int("CEStatus")
|
|
override_value = 0 if conditional_status in (1, 2, 3, 4, 5, 6) else 3 if conditional_status >= 7 else 4
|
|
params_memory.put_int("CEStatus", override_value)
|
|
|
|
@staticmethod
|
|
def update_cestatus_lkas(self):
|
|
# Set "CEStatus" to work with "Conditional Experimental Mode"
|
|
conditional_status = params_memory.get_int("CEStatus")
|
|
override_value = 0 if conditional_status in (1, 2, 3, 4, 5, 6) else 5 if conditional_status >= 7 else 6
|
|
params_memory.put_int("CEStatus", override_value)
|
|
|
|
def update_experimental_mode(self):
|
|
experimental_mode = self.params.get_bool("ExperimentalMode")
|
|
# Invert the value of "ExperimentalMode"
|
|
self.params.put_bool("ExperimentalMode", not experimental_mode)
|
|
|
|
@staticmethod
|
|
def road_curvature(modelData, v_ego):
|
|
predicted_velocities = np.array(modelData.velocity.x)
|
|
curvature_ratios = np.abs(np.array(modelData.acceleration.y)) / (predicted_velocities**2)
|
|
return np.amax(curvature_ratios * (v_ego**2))
|