Files
clearpilot/selfdrive/frogpilot/controls/lib/conditional_experimental_mode.py
Your Name ab7726ef50 wip
2024-04-27 13:06:31 -05:00

196 lines
7.8 KiB
Python

from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import CITY_SPEED_LIMIT, CRUISING_SPEED, PROBABILITY, MovingAverageCalculator
from openpilot.selfdrive.frogpilot.controls.lib.speed_limit_controller import SpeedLimitController
SLOW_DOWN_BP = [0., 10., 20., 30., 40., 50., 55., 60.]
SLOW_DOWN_DISTANCE = [20, 30., 50., 70., 80., 90., 105., 120.]
TRAJECTORY_SIZE = 33
class ConditionalExperimentalMode:
def __init__(self):
self.params = Params()
self.params_memory = Params("/dev/shm/params")
self.curve_detected = False
self.experimental_mode = False
self.lead_detected = False
self.red_light_detected = False
self.slower_lead_detected = False
self.previous_status_value = 0
self.previous_v_ego = 0
self.previous_v_lead = 0
self.status_value = 0
self.curvature_mac = MovingAverageCalculator()
self.lead_detection_mac = MovingAverageCalculator()
self.lead_slowing_down_mac = MovingAverageCalculator()
self.slow_lead_mac = MovingAverageCalculator()
self.slowing_down_mac = MovingAverageCalculator()
self.stop_light_mac = MovingAverageCalculator()
self.update_frogpilot_params()
def update(self, carState, enabled, frogpilotNavigation, lead, modelData, road_curvature, t_follow, v_ego):
lead_distance = lead.dRel
standstill = carState.standstill
v_lead = lead.vLead
if self.experimental_mode_via_press and enabled:
overridden = self.params_memory.get_int("CEStatus")
else:
overridden = 0
self.update_conditions(lead_distance, lead.status, modelData, road_curvature, standstill, t_follow, v_ego, v_lead)
condition_met = self.check_conditions(carState, frogpilotNavigation, lead, modelData, standstill, v_ego) and enabled
if condition_met and overridden not in {1, 3, 5} or overridden in {2, 4, 6}:
self.experimental_mode = True
else:
self.experimental_mode = False
self.status_value = 0
self.status_value = overridden if overridden in {1, 2, 3, 4, 5, 6} else self.status_value
if self.status_value != self.previous_status_value:
self.params_memory.put_int("CEStatus", self.status_value)
self.previous_status_value = self.status_value
if self.params_memory.get_bool("FrogPilotTogglesUpdated"):
self.update_frogpilot_params()
def check_conditions(self, carState, frogpilotNavigation, lead, modelData, standstill, v_ego):
if standstill:
self.status_value = 0
return self.experimental_mode
# Keep Experimental Mode active if stopping for a red light
if self.status_value == 15 and self.slowing_down(v_ego):
return True
if self.navigation and modelData.navEnabled and (frogpilotNavigation.approachingIntersection or frogpilotNavigation.approachingTurn) and (self.navigation_lead or not self.lead_detected):
self.status_value = 7 if frogpilotNavigation.approachingIntersection else 8
return True
if SpeedLimitController.experimental_mode:
self.status_value = 9
return True
if (not self.lead_detected and v_ego <= self.limit) or (self.lead_detected and v_ego <= self.limit_lead):
self.status_value = 10 if self.lead_detected else 11
return True
if self.slower_lead and self.slower_lead_detected:
self.status_value = 12
return True
if self.signal and v_ego <= CITY_SPEED_LIMIT and (carState.leftBlinker or carState.rightBlinker):
self.status_value = 13
return True
if self.curves and self.curve_detected:
self.status_value = 14
return True
if self.stop_lights and self.red_light_detected:
self.status_value = 15
return True
return False
def update_conditions(self, lead_distance, lead_status, modelData, road_curvature, standstill, t_follow, v_ego, v_lead):
self.lead_detection(lead_status)
self.road_curvature(road_curvature)
self.slow_lead(lead_distance, t_follow, v_ego)
self.stop_sign_and_light(lead_distance, modelData, standstill, v_ego, v_lead)
def lead_detection(self, lead_status):
self.lead_detection_mac.add_data(lead_status)
self.lead_detected = self.lead_detection_mac.get_moving_average() >= PROBABILITY
def lead_slowing_down(self, lead_distance, v_ego, v_lead):
if self.lead_detected:
lead_close = lead_distance < CITY_SPEED_LIMIT
lead_far = lead_distance >= CITY_SPEED_LIMIT and (v_lead >= self.previous_v_lead > 1 or v_lead > v_ego)
lead_slowing_down = v_lead < self.previous_v_lead
lead_stopped = v_lead < 1
self.previous_v_lead = v_lead
self.lead_slowing_down_mac.add_data((lead_close or lead_slowing_down or lead_stopped) and not lead_far)
return self.lead_slowing_down_mac.get_moving_average() >= PROBABILITY
else:
self.lead_slowing_down_mac.reset_data()
self.previous_v_lead = 0
return False
# Determine the road curvature - Credit goes to to Pfeiferj!
def road_curvature(self, road_curvature):
lead_check = self.curves_lead or not self.lead_detected
if lead_check and not self.red_light_detected:
# Setting a limit of 5.0 helps prevent it triggering for red lights
curve_detected = 5.0 >= road_curvature > 1.6
curve_active = 5.0 >= road_curvature > 1.1 and self.curve_detected
self.curvature_mac.add_data(curve_detected or curve_active)
self.curve_detected = self.curvature_mac.get_moving_average() >= PROBABILITY
else:
self.curvature_mac.reset_data()
self.curve_detected = False
def slow_lead(self, lead_distance, t_follow, v_ego):
if self.lead_detected:
slower_lead_ahead = lead_distance < (v_ego - 1) * t_follow
self.slow_lead_mac.add_data(slower_lead_ahead)
self.slower_lead_detected = self.slow_lead_mac.get_moving_average() >= PROBABILITY
else:
self.slow_lead_mac.reset_data()
self.slower_lead_detected = False
def slowing_down(self, v_ego):
slowing_down = v_ego <= self.previous_v_ego
speed_check = v_ego < CRUISING_SPEED
self.previous_v_ego = v_ego
self.slowing_down_mac.add_data(slowing_down and speed_check)
return self.slowing_down_mac.get_moving_average() >= PROBABILITY
# Stop sign/stop light detection - Credit goes to the DragonPilot team!
def stop_sign_and_light(self, lead_distance, modelData, standstill, v_ego, v_lead):
lead_check = self.stop_lights_lead or not self.lead_slowing_down(lead_distance, v_ego, v_lead) or standstill
model_check = len(modelData.orientation.x) == len(modelData.position.x) == TRAJECTORY_SIZE
model_stopping = modelData.position.x[TRAJECTORY_SIZE - 1] < interp(v_ego * CV.MS_TO_KPH, SLOW_DOWN_BP, SLOW_DOWN_DISTANCE)
model_filtered = not (self.curve_detected or self.slower_lead_detected)
self.stop_light_mac.add_data(lead_check and model_check and model_stopping and model_filtered)
self.red_light_detected = self.stop_light_mac.get_moving_average() >= PROBABILITY
def update_frogpilot_params(self):
is_metric = self.params.get_bool("IsMetric")
self.curves = self.params.get_bool("CECurves")
self.curves_lead = self.curves and self.params.get_bool("CECurvesLead")
self.experimental_mode_via_press = self.params.get_bool("ExperimentalModeActivation")
self.limit = self.params.get_int("CESpeed") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.limit_lead = self.params.get_int("CESpeedLead") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.navigation = self.params.get_bool("CENavigation")
self.navigation_lead = self.navigation and self.params.get_bool("CENavigationLead")
self.signal = self.params.get_bool("CESignal")
self.slower_lead = self.params.get_bool("CESlowerLead")
self.stop_lights = self.params.get_bool("CEStopLights")
self.stop_lights_lead = self.stop_lights and self.params.get_bool("CEStopLightsLead")