Add openpilot tools

This commit is contained in:
FrogAi
2024-01-12 22:39:30 -07:00
parent d1bee2c971
commit 0174873f46
154 changed files with 16477 additions and 0 deletions

37
tools/sim/Dockerfile.sim Normal file
View File

@@ -0,0 +1,37 @@
FROM ghcr.io/commaai/openpilot-base-cl:latest
RUN apt-get update && apt-get install -y --no-install-recommends \
tmux \
vim \
&& rm -rf /var/lib/apt/lists/*
# get same tmux config used on NEOS for debugging
RUN cd $HOME && \
curl -O https://raw.githubusercontent.com/commaai/eon-neos-builder/master/devices/eon/home/.tmux.conf
ENV OPENPILOT_PATH /tmp/openpilot
ENV PYTHONPATH ${OPENPILOT_PATH}:${PYTHONPATH}
RUN mkdir -p ${OPENPILOT_PATH}
WORKDIR ${OPENPILOT_PATH}
COPY SConstruct ${OPENPILOT_PATH}
COPY ./openpilot ${OPENPILOT_PATH}/openpilot
COPY ./body ${OPENPILOT_PATH}/body
COPY ./third_party ${OPENPILOT_PATH}/third_party
COPY ./site_scons ${OPENPILOT_PATH}/site_scons
COPY ./rednose ${OPENPILOT_PATH}/rednose
COPY ./rednose_repo/site_scons ${OPENPILOT_PATH}/rednose_repo/site_scons
COPY ./common ${OPENPILOT_PATH}/common
COPY ./opendbc ${OPENPILOT_PATH}/opendbc
COPY ./cereal ${OPENPILOT_PATH}/cereal
COPY ./panda ${OPENPILOT_PATH}/panda
COPY ./selfdrive ${OPENPILOT_PATH}/selfdrive
COPY ./system ${OPENPILOT_PATH}/system
COPY ./tools ${OPENPILOT_PATH}/tools
COPY ./release ${OPENPILOT_PATH}/release
RUN --mount=type=bind,source=.ci_cache/scons_cache,target=/tmp/scons_cache,rw scons -j$(nproc) --cache-readonly
RUN python -c "from openpilot.selfdrive.test.helpers import set_params_enabled; set_params_enabled()"

View File

@@ -0,0 +1,21 @@
FROM ubuntu:20.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y --no-install-recommends \
apt-utils \
sudo \
ssh \
curl \
ca-certificates \
git \
git-lfs && \
rm -rf /var/lib/apt/lists/*
RUN curl -fsSL https://get.docker.com -o get-docker.sh && \
sudo sh get-docker.sh && \
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && \
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - && \
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list && \
sudo apt-get update && \
sudo apt-get install -y nvidia-docker2

84
tools/sim/README.md Normal file
View File

@@ -0,0 +1,84 @@
openpilot in simulator
=====================
openpilot implements a [bridge](run_bridge.py) that allows it to run in the [MetaDrive simulator](https://github.com/metadriverse/metadrive) or [CARLA simulator](https://carla.org/).
## Launching openpilot
First, start openpilot.
``` bash
# Run locally
./tools/sim/launch_openpilot.sh
```
## Bridge usage
```
$ ./run_bridge.py -h
usage: run_bridge.py [-h] [--joystick] [--high_quality] [--dual_camera] [--simulator SIMULATOR] [--town TOWN] [--spawn_point NUM_SELECTED_SPAWN_POINT] [--host HOST] [--port PORT]
Bridge between the simulator and openpilot.
options:
-h, --help show this help message and exit
--joystick
--high_quality
--dual_camera
--simulator SIMULATOR
--town TOWN
--spawn_point NUM_SELECTED_SPAWN_POINT
--host HOST
--port PORT
```
#### Bridge Controls:
- To engage openpilot press 2, then press 1 to increase the speed and 2 to decrease.
- To disengage, press "S" (simulates a user brake)
#### All inputs:
```
| key | functionality |
|------|-----------------------|
| 1 | Cruise Resume / Accel |
| 2 | Cruise Set / Decel |
| 3 | Cruise Cancel |
| r | Reset Simulation |
| i | Toggle Ignition |
| q | Exit all |
| wasd | Control manually |
```
## MetaDrive
### Launching Metadrive
Start bridge processes located in tools/sim:
``` bash
./run_bridge.py --simulator metadrive
```
## Carla
CARLA is also partially supported, though the performance is not great. It needs to be manually installed with:
```bash
poetry install --with=carla
```
openpilot doesn't have any extreme hardware requirements, however CARLA requires an NVIDIA graphics card and is very resource-intensive and may not run smoothly on your system.
For this case, we have the simulator in low quality by default.
You can also check out the [CARLA python documentation](https://carla.readthedocs.io/en/latest/python_api/) to find more parameters to tune that might increase performance on your system.
### Launching Carla
Start Carla simulator and bridge processes located in tools/sim:
``` bash
# Terminal 1
./start_carla.sh
# Terminal 2
./run_bridge.py --simulator carla
```
## Further Reading
The following resources contain more details and troubleshooting tips.
* [CARLA on the openpilot wiki](https://github.com/commaai/openpilot/wiki/CARLA)

0
tools/sim/__init__.py Normal file
View File

View File

View File

@@ -0,0 +1,22 @@
from openpilot.tools.sim.bridge.common import SimulatorBridge
from openpilot.tools.sim.bridge.carla.carla_world import CarlaWorld
class CarlaBridge(SimulatorBridge):
TICKS_PER_FRAME = 5
def __init__(self, arguments):
super().__init__(arguments)
self.host = arguments.host
self.port = arguments.port
self.town = arguments.town
self.num_selected_spawn_point = arguments.num_selected_spawn_point
def spawn_world(self):
import carla
client = carla.Client(self.host, self.port)
client.set_timeout(5)
return CarlaWorld(client, high_quality=self.high_quality, dual_camera=self.dual_camera,
num_selected_spawn_point=self.num_selected_spawn_point, town=self.town)

View File

@@ -0,0 +1,145 @@
import numpy as np
from openpilot.common.params import Params
from openpilot.tools.sim.lib.common import SimulatorState, vec3
from openpilot.tools.sim.bridge.common import World
from openpilot.tools.sim.lib.camerad import W, H
class CarlaWorld(World):
def __init__(self, client, high_quality, dual_camera, num_selected_spawn_point, town):
super().__init__(dual_camera)
import carla
low_quality_layers = carla.MapLayer(carla.MapLayer.Ground | carla.MapLayer.Walls | carla.MapLayer.Decals)
layers = carla.MapLayer.All if high_quality else low_quality_layers
world = client.load_world(town, map_layers=layers)
settings = world.get_settings()
settings.fixed_delta_seconds = 0.01
world.apply_settings(settings)
world.set_weather(carla.WeatherParameters.ClearSunset)
self.world = world
world_map = world.get_map()
blueprint_library = world.get_blueprint_library()
vehicle_bp = blueprint_library.filter('vehicle.tesla.*')[1]
vehicle_bp.set_attribute('role_name', 'hero')
spawn_points = world_map.get_spawn_points()
assert len(spawn_points) > num_selected_spawn_point, \
f'''No spawn point {num_selected_spawn_point}, try a value between 0 and {len(spawn_points)} for this town.'''
self.spawn_point = spawn_points[num_selected_spawn_point]
self.vehicle = world.spawn_actor(vehicle_bp, self.spawn_point)
physics_control = self.vehicle.get_physics_control()
physics_control.mass = 2326
physics_control.torque_curve = [[20.0, 500.0], [5000.0, 500.0]]
physics_control.gear_switch_time = 0.0
self.vehicle.apply_physics_control(physics_control)
self.vc: carla.VehicleControl = carla.VehicleControl(throttle=0, steer=0, brake=0, reverse=False)
self.max_steer_angle: float = self.vehicle.get_physics_control().wheels[0].max_steer_angle
self.params = Params()
self.steer_ratio = 15
self.carla_objects = []
transform = carla.Transform(carla.Location(x=0.8, z=1.13))
def create_camera(fov, callback):
blueprint = blueprint_library.find('sensor.camera.rgb')
blueprint.set_attribute('image_size_x', str(W))
blueprint.set_attribute('image_size_y', str(H))
blueprint.set_attribute('fov', str(fov))
blueprint.set_attribute('sensor_tick', str(1/20))
if not high_quality:
blueprint.set_attribute('enable_postprocess_effects', 'False')
camera = world.spawn_actor(blueprint, transform, attach_to=self.vehicle)
camera.listen(callback)
return camera
self.road_camera = create_camera(fov=40, callback=self.cam_callback_road)
if dual_camera:
self.road_wide_camera = create_camera(fov=120, callback=self.cam_callback_wide_road) # fov bigger than 120 shows unwanted artifacts
else:
self.road_wide_camera = None
# re-enable IMU
imu_bp = blueprint_library.find('sensor.other.imu')
imu_bp.set_attribute('sensor_tick', '0.01')
self.imu = world.spawn_actor(imu_bp, transform, attach_to=self.vehicle)
gps_bp = blueprint_library.find('sensor.other.gnss')
self.gps = world.spawn_actor(gps_bp, transform, attach_to=self.vehicle)
self.params.put_bool("UbloxAvailable", True)
self.carla_objects = [self.imu, self.gps, self.road_camera, self.road_wide_camera, self.vehicle]
def close(self):
for s in self.carla_objects:
if s is not None:
try:
s.destroy()
except Exception as e:
print("Failed to destroy carla object", e)
def carla_image_to_rgb(self, image):
rgb = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
rgb = np.reshape(rgb, (H, W, 4))
return np.ascontiguousarray(rgb[:, :, [0, 1, 2]])
def cam_callback_road(self, image):
with self.image_lock:
self.road_image = self.carla_image_to_rgb(image)
def cam_callback_wide_road(self, image):
with self.image_lock:
self.wide_road_image = self.carla_image_to_rgb(image)
def apply_controls(self, steer_angle, throttle_out, brake_out):
self.vc.throttle = throttle_out
steer_carla = steer_angle * -1 / (self.max_steer_angle * self.steer_ratio)
steer_carla = np.clip(steer_carla, -1, 1)
self.vc.steer = steer_carla
self.vc.brake = brake_out
self.vehicle.apply_control(self.vc)
def read_sensors(self, simulator_state: SimulatorState):
simulator_state.imu.bearing = self.imu.get_transform().rotation.yaw
simulator_state.imu.accelerometer = vec3(
self.imu.get_acceleration().x,
self.imu.get_acceleration().y,
self.imu.get_acceleration().z
)
simulator_state.imu.gyroscope = vec3(
self.imu.get_angular_velocity().x,
self.imu.get_angular_velocity().y,
self.imu.get_angular_velocity().z
)
simulator_state.gps.from_xy([self.vehicle.get_location().x, self.vehicle.get_location().y])
simulator_state.velocity = self.vehicle.get_velocity()
simulator_state.valid = True
simulator_state.steering_angle = self.vc.steer * self.max_steer_angle
def read_cameras(self):
pass # cameras are read within a callback for carla
def tick(self):
self.world.tick()
def reset(self):
import carla
self.vehicle.set_transform(self.spawn_point)
self.vehicle.set_target_velocity(carla.Vector3D())

186
tools/sim/bridge/common.py Normal file
View File

@@ -0,0 +1,186 @@
import signal
import threading
import functools
from multiprocessing import Process, Queue
from abc import ABC, abstractmethod
from typing import Optional
from openpilot.common.params import Params
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import Ratekeeper
from openpilot.selfdrive.test.helpers import set_params_enabled
from openpilot.selfdrive.car.honda.values import CruiseButtons
from openpilot.tools.sim.lib.common import SimulatorState, World
from openpilot.tools.sim.lib.simulated_car import SimulatedCar
from openpilot.tools.sim.lib.simulated_sensors import SimulatedSensors
from openpilot.tools.sim.lib.keyboard_ctrl import KEYBOARD_HELP
def rk_loop(function, hz, exit_event: threading.Event):
rk = Ratekeeper(hz, None)
while not exit_event.is_set():
function()
rk.keep_time()
class SimulatorBridge(ABC):
TICKS_PER_FRAME = 5
def __init__(self, arguments):
set_params_enabled()
self.params = Params()
self.rk = Ratekeeper(100, None)
self.dual_camera = arguments.dual_camera
self.high_quality = arguments.high_quality
self._exit_event = threading.Event()
self._threads = []
self._keep_alive = True
self.started = False
signal.signal(signal.SIGTERM, self._on_shutdown)
self._exit = threading.Event()
self.simulator_state = SimulatorState()
self.world: Optional[World] = None
self.past_startup_engaged = False
def _on_shutdown(self, signal, frame):
self.shutdown()
def shutdown(self):
self._keep_alive = False
def bridge_keep_alive(self, q: Queue, retries: int):
try:
self._run(q)
finally:
self.close()
def close(self):
self.started = False
self._exit_event.set()
if self.world is not None:
self.world.close()
def run(self, queue, retries=-1):
bridge_p = Process(name="bridge", target=self.bridge_keep_alive, args=(queue, retries))
bridge_p.start()
return bridge_p
def print_status(self):
print(
f"""
Keyboard Commands:
{KEYBOARD_HELP}
State:
Ignition: {self.simulator_state.ignition} Engaged: {self.simulator_state.is_engaged}
""")
@abstractmethod
def spawn_world(self) -> World:
pass
def _run(self, q: Queue):
self.world = self.spawn_world()
self.simulated_car = SimulatedCar()
self.simulated_sensors = SimulatedSensors(self.dual_camera)
self.simulated_car_thread = threading.Thread(target=rk_loop, args=(functools.partial(self.simulated_car.update, self.simulator_state),
100, self._exit_event))
self.simulated_car_thread.start()
self.simulated_camera_thread = threading.Thread(target=rk_loop, args=(functools.partial(self.simulated_sensors.send_camera_images, self.world),
20, self._exit_event))
self.simulated_camera_thread.start()
# Simulation tends to be slow in the initial steps. This prevents lagging later
for _ in range(20):
self.world.tick()
while self._keep_alive:
throttle_out = steer_out = brake_out = 0.0
throttle_op = steer_op = brake_op = 0.0
self.simulator_state.cruise_button = 0
self.simulator_state.left_blinker = False
self.simulator_state.right_blinker = False
throttle_manual = steer_manual = brake_manual = 0.
# Read manual controls
if not q.empty():
message = q.get()
m = message.split('_')
if m[0] == "steer":
steer_manual = float(m[1])
elif m[0] == "throttle":
throttle_manual = float(m[1])
elif m[0] == "brake":
brake_manual = float(m[1])
elif m[0] == "cruise":
if m[1] == "down":
self.simulator_state.cruise_button = CruiseButtons.DECEL_SET
elif m[1] == "up":
self.simulator_state.cruise_button = CruiseButtons.RES_ACCEL
elif m[1] == "cancel":
self.simulator_state.cruise_button = CruiseButtons.CANCEL
elif m[1] == "main":
self.simulator_state.cruise_button = CruiseButtons.MAIN
elif m[0] == "blinker":
if m[1] == "left":
self.simulator_state.left_blinker = True
elif m[1] == "right":
self.simulator_state.right_blinker = True
elif m[0] == "ignition":
self.simulator_state.ignition = not self.simulator_state.ignition
elif m[0] == "reset":
self.world.reset()
elif m[0] == "quit":
break
self.simulator_state.user_brake = brake_manual
self.simulator_state.user_gas = throttle_manual
self.simulator_state.user_torque = steer_manual * 10000
steer_manual = steer_manual * -40
# Update openpilot on current sensor state
self.simulated_sensors.update(self.simulator_state, self.world)
self.simulated_car.sm.update(0)
controlsState = self.simulated_car.sm['controlsState']
self.simulator_state.is_engaged = controlsState.active
if self.simulator_state.is_engaged:
throttle_op = clip(self.simulated_car.sm['carControl'].actuators.accel / 1.6, 0.0, 1.0)
brake_op = clip(-self.simulated_car.sm['carControl'].actuators.accel / 4.0, 0.0, 1.0)
steer_op = self.simulated_car.sm['carControl'].actuators.steeringAngleDeg
self.past_startup_engaged = True
elif not self.past_startup_engaged and controlsState.engageable:
self.simulator_state.cruise_button = CruiseButtons.DECEL_SET # force engagement on startup
throttle_out = throttle_op if self.simulator_state.is_engaged else throttle_manual
brake_out = brake_op if self.simulator_state.is_engaged else brake_manual
steer_out = steer_op if self.simulator_state.is_engaged else steer_manual
self.world.apply_controls(steer_out, throttle_out, brake_out)
self.world.read_sensors(self.simulator_state)
if self.rk.frame % self.TICKS_PER_FRAME == 0:
self.world.tick()
self.world.read_cameras()
if self.rk.frame % 25 == 0:
self.print_status()
self.started = True
self.rk.keep_time()

View File

@@ -0,0 +1,119 @@
import numpy as np
from metadrive.component.sensors.rgb_camera import RGBCamera
from metadrive.component.sensors.base_camera import _cuda_enable
from metadrive.component.map.pg_map import MapGenerateMethod
from panda3d.core import Vec3, Texture, GraphicsOutput
from openpilot.tools.sim.bridge.common import SimulatorBridge
from openpilot.tools.sim.bridge.metadrive.metadrive_world import MetaDriveWorld
from openpilot.tools.sim.lib.camerad import W, H
C3_POSITION = Vec3(0, 0, 1)
class CopyRamRGBCamera(RGBCamera):
"""Camera which copies its content into RAM during the render process, for faster image grabbing."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.cpu_texture = Texture()
self.buffer.addRenderTexture(self.cpu_texture, GraphicsOutput.RTMCopyRam)
def get_rgb_array_cpu(self):
origin_img = self.cpu_texture
img = np.frombuffer(origin_img.getRamImage().getData(), dtype=np.uint8)
img = img.reshape((origin_img.getYSize(), origin_img.getXSize(), -1))
img = img[:,:,:3] # RGBA to RGB
# img = np.swapaxes(img, 1, 0)
img = img[::-1] # Flip on vertical axis
return img
class RGBCameraWide(CopyRamRGBCamera):
def __init__(self, *args, **kwargs):
super(RGBCameraWide, self).__init__(*args, **kwargs)
cam = self.get_cam()
cam.setPos(C3_POSITION)
lens = self.get_lens()
lens.setFov(160)
class RGBCameraRoad(CopyRamRGBCamera):
def __init__(self, *args, **kwargs):
super(RGBCameraRoad, self).__init__(*args, **kwargs)
cam = self.get_cam()
cam.setPos(C3_POSITION)
lens = self.get_lens()
lens.setFov(40)
def straight_block(length):
return {
"id": "S",
"pre_block_socket_index": 0,
"length": length
}
def curve_block(length, angle=45, direction=0):
return {
"id": "C",
"pre_block_socket_index": 0,
"length": length,
"radius": length,
"angle": angle,
"dir": direction
}
class MetaDriveBridge(SimulatorBridge):
TICKS_PER_FRAME = 5
def __init__(self, args):
self.should_render = False
super(MetaDriveBridge, self).__init__(args)
def spawn_world(self):
sensors = {
"rgb_road": (RGBCameraRoad, W, H, )
}
if self.dual_camera:
sensors["rgb_wide"] = (RGBCameraWide, W, H)
config = dict(
use_render=self.should_render,
vehicle_config=dict(
enable_reverse=False,
image_source="rgb_road",
spawn_longitude=15
),
sensors=sensors,
image_on_cuda=_cuda_enable,
image_observation=True,
interface_panel=[],
out_of_route_done=False,
on_continuous_line_done=False,
crash_vehicle_done=False,
crash_object_done=False,
traffic_density=0.0, # traffic is incredibly expensive
map_config=dict(
type=MapGenerateMethod.PG_MAP_FILE,
config=[
None,
straight_block(120),
curve_block(240, 90),
straight_block(120),
curve_block(240, 90),
straight_block(120),
curve_block(240, 90),
straight_block(120),
curve_block(240, 90),
]
),
decision_repeat=1,
physics_world_step_size=self.TICKS_PER_FRAME/100,
preload_models=False
)
return MetaDriveWorld(config)

View File

@@ -0,0 +1,99 @@
import math
import numpy as np
from collections import namedtuple
from multiprocessing.connection import Connection
from metadrive.engine.core.engine_core import EngineCore
from metadrive.engine.core.image_buffer import ImageBuffer
from metadrive.envs.metadrive_env import MetaDriveEnv
from metadrive.obs.image_obs import ImageObservation
from openpilot.common.realtime import Ratekeeper
from openpilot.tools.sim.lib.common import vec3
from openpilot.tools.sim.lib.camerad import W, H
metadrive_state = namedtuple("metadrive_state", ["velocity", "position", "bearing", "steering_angle"])
def apply_metadrive_patches():
# By default, metadrive won't try to use cuda images unless it's used as a sensor for vehicles, so patch that in
def add_image_sensor_patched(self, name: str, cls, args):
if self.global_config["image_on_cuda"]:# and name == self.global_config["vehicle_config"]["image_source"]:
sensor = cls(*args, self, cuda=True)
else:
sensor = cls(*args, self, cuda=False)
assert isinstance(sensor, ImageBuffer), "This API is for adding image sensor"
self.sensors[name] = sensor
EngineCore.add_image_sensor = add_image_sensor_patched
# we aren't going to use the built-in observation stack, so disable it to save time
def observe_patched(self, vehicle):
return self.state
ImageObservation.observe = observe_patched
def arrive_destination_patch(self, vehicle):
return False
MetaDriveEnv._is_arrive_destination = arrive_destination_patch
def metadrive_process(dual_camera: bool, config: dict, camera_array, controls_recv: Connection, state_send: Connection, exit_event):
apply_metadrive_patches()
road_image = np.frombuffer(camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
env = MetaDriveEnv(config)
def reset():
env.reset()
env.vehicle.config["max_speed_km_h"] = 1000
reset()
def get_cam_as_rgb(cam):
cam = env.engine.sensors[cam]
img = cam.perceive(env.vehicle, clip=False)
if type(img) != np.ndarray:
img = img.get() # convert cupy array to numpy
return img
rk = Ratekeeper(100, None)
steer_ratio = 15
vc = [0,0]
while not exit_event.is_set():
state = metadrive_state(
velocity=vec3(x=float(env.vehicle.velocity[0]), y=float(env.vehicle.velocity[1]), z=0),
position=env.vehicle.position,
bearing=float(math.degrees(env.vehicle.heading_theta)),
steering_angle=env.vehicle.steering * env.vehicle.MAX_STEERING
)
state_send.send(state)
if controls_recv.poll(0):
while controls_recv.poll(0):
steer_angle, gas, should_reset = controls_recv.recv()
steer_metadrive = steer_angle * 1 / (env.vehicle.MAX_STEERING * steer_ratio)
steer_metadrive = np.clip(steer_metadrive, -1, 1)
vc = [steer_metadrive, gas]
if should_reset:
reset()
if rk.frame % 5 == 0:
obs, _, terminated, _, info = env.step(vc)
if terminated:
reset()
#if dual_camera:
# wide_road_image = get_cam_as_rgb("rgb_wide")
road_image[...] = get_cam_as_rgb("rgb_road")
rk.keep_time()

View File

@@ -0,0 +1,75 @@
import ctypes
import functools
import multiprocessing
import numpy as np
import time
from multiprocessing import Pipe, Array
from openpilot.tools.sim.bridge.metadrive.metadrive_process import metadrive_process, metadrive_state
from openpilot.tools.sim.lib.common import SimulatorState, World
from openpilot.tools.sim.lib.camerad import W, H
class MetaDriveWorld(World):
def __init__(self, config, dual_camera = False):
super().__init__(dual_camera)
self.camera_array = Array(ctypes.c_uint8, W*H*3)
self.road_image = np.frombuffer(self.camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
self.controls_send, self.controls_recv = Pipe()
self.state_send, self.state_recv = Pipe()
self.exit_event = multiprocessing.Event()
self.metadrive_process = multiprocessing.Process(name="metadrive process", target=
functools.partial(metadrive_process, dual_camera, config,
self.camera_array, self.controls_recv, self.state_send, self.exit_event))
self.metadrive_process.start()
print("----------------------------------------------------------")
print("---- Spawning Metadrive world, this might take awhile ----")
print("----------------------------------------------------------")
self.state_recv.recv() # wait for a state message to ensure metadrive is launched
self.steer_ratio = 15
self.vc = [0.0,0.0]
self.reset_time = 0
self.should_reset = False
def apply_controls(self, steer_angle, throttle_out, brake_out):
if (time.monotonic() - self.reset_time) > 2:
self.vc[0] = steer_angle
if throttle_out:
self.vc[1] = throttle_out
else:
self.vc[1] = -brake_out
else:
self.vc[0] = 0
self.vc[1] = 0
self.controls_send.send([*self.vc, self.should_reset])
self.should_reset = False
def read_sensors(self, state: SimulatorState):
while self.state_recv.poll(0):
md_state: metadrive_state = self.state_recv.recv()
state.velocity = md_state.velocity
state.bearing = md_state.bearing
state.steering_angle = md_state.steering_angle
state.gps.from_xy(md_state.position)
state.valid = True
def read_cameras(self):
pass
def tick(self):
pass
def reset(self):
self.should_reset = True
def close(self):
self.exit_event.set()
self.metadrive_process.join()

View File

@@ -0,0 +1,10 @@
#!/bin/bash
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
cd $DIR/../../
docker pull ghcr.io/commaai/openpilot-base-cl:latest
docker build \
--cache-from ghcr.io/commaai/openpilot-sim:latest \
-t ghcr.io/commaai/openpilot-sim:latest \
-f tools/sim/Dockerfile.sim .

View File

@@ -0,0 +1,21 @@
#!/bin/bash
export PASSIVE="0"
export NOBOARD="1"
export SIMULATION="1"
export SKIP_FW_QUERY="1"
export FINGERPRINT="HONDA CIVIC 2016"
export BLOCK="${BLOCK},camerad,loggerd,encoderd,micd,logmessaged"
if [[ "$CI" ]]; then
# TODO: offscreen UI should work
export BLOCK="${BLOCK},ui"
fi
python -c "from openpilot.selfdrive.test.helpers import set_params_enabled; set_params_enabled()"
SCRIPT_DIR=$(dirname "$0")
OPENPILOT_DIR=$SCRIPT_DIR/../../
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
cd $OPENPILOT_DIR/selfdrive/manager && exec ./manager.py

View File

70
tools/sim/lib/camerad.py Normal file
View File

@@ -0,0 +1,70 @@
import numpy as np
import os
import pyopencl as cl
import pyopencl.array as cl_array
from cereal.visionipc import VisionIpcServer, VisionStreamType
from cereal import messaging
from openpilot.common.basedir import BASEDIR
from openpilot.tools.sim.lib.common import W, H
class Camerad:
"""Simulates the camerad daemon"""
def __init__(self, dual_camera):
self.pm = messaging.PubMaster(['roadCameraState', 'wideRoadCameraState'])
self.frame_road_id = 0
self.frame_wide_id = 0
self.vipc_server = VisionIpcServer("camerad")
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_ROAD, 5, False, W, H)
if dual_camera:
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_WIDE_ROAD, 5, False, W, H)
self.vipc_server.start_listener()
# set up for pyopencl rgb to yuv conversion
self.ctx = cl.create_some_context()
self.queue = cl.CommandQueue(self.ctx)
cl_arg = f" -DHEIGHT={H} -DWIDTH={W} -DRGB_STRIDE={W * 3} -DUV_WIDTH={W // 2} -DUV_HEIGHT={H // 2} -DRGB_SIZE={W * H} -DCL_DEBUG "
kernel_fn = os.path.join(BASEDIR, "tools/sim/rgb_to_nv12.cl")
with open(kernel_fn) as f:
prg = cl.Program(self.ctx, f.read()).build(cl_arg)
self.krnl = prg.rgb_to_nv12
self.Wdiv4 = W // 4 if (W % 4 == 0) else (W + (4 - W % 4)) // 4
self.Hdiv4 = H // 4 if (H % 4 == 0) else (H + (4 - H % 4)) // 4
def cam_send_yuv_road(self, yuv):
self._send_yuv(yuv, self.frame_road_id, 'roadCameraState', VisionStreamType.VISION_STREAM_ROAD)
self.frame_road_id += 1
def cam_send_yuv_wide_road(self, yuv):
self._send_yuv(yuv, self.frame_wide_id, 'wideRoadCameraState', VisionStreamType.VISION_STREAM_WIDE_ROAD)
self.frame_wide_id += 1
# Returns: yuv bytes
def rgb_to_yuv(self, rgb):
assert rgb.shape == (H, W, 3), f"{rgb.shape}"
assert rgb.dtype == np.uint8
rgb_cl = cl_array.to_device(self.queue, rgb)
yuv_cl = cl_array.empty_like(rgb_cl)
self.krnl(self.queue, (self.Wdiv4, self.Hdiv4), None, rgb_cl.data, yuv_cl.data).wait()
yuv = np.resize(yuv_cl.get(), rgb.size // 2)
return yuv.data.tobytes()
def _send_yuv(self, yuv, frame_id, pub_type, yuv_type):
eof = int(frame_id * 0.05 * 1e9)
self.vipc_server.send(yuv_type, yuv, frame_id, eof, eof)
dat = messaging.new_message(pub_type)
msg = {
"frameId": frame_id,
"transform": [1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0]
}
setattr(dat, pub_type, msg)
self.pm.send(pub_type, dat)

94
tools/sim/lib/common.py Normal file
View File

@@ -0,0 +1,94 @@
import math
import threading
import numpy as np
from abc import ABC, abstractmethod
from collections import namedtuple
W, H = 1928, 1208
vec3 = namedtuple("vec3", ["x", "y", "z"])
class GPSState:
def __init__(self):
self.latitude = 0
self.longitude = 0
self.altitude = 0
def from_xy(self, xy):
"""Simulates a lat/lon from an xy coordinate on a plane, for simple simlation. TODO: proper global projection?"""
BASE_LAT = 32.75308505188913
BASE_LON = -117.2095393365393
DEG_TO_METERS = 100000
self.latitude = float(BASE_LAT + xy[0] / DEG_TO_METERS)
self.longitude = float(BASE_LON + xy[1] / DEG_TO_METERS)
self.altitude = 0
class IMUState:
def __init__(self):
self.accelerometer: vec3 = vec3(0,0,0)
self.gyroscope: vec3 = vec3(0,0,0)
self.bearing: float = 0
class SimulatorState:
def __init__(self):
self.valid = False
self.is_engaged = False
self.ignition = True
self.velocity: vec3 = None
self.bearing: float = 0
self.gps = GPSState()
self.imu = IMUState()
self.steering_angle: float = 0
self.user_gas: float = 0
self.user_brake: float = 0
self.user_torque: float = 0
self.cruise_button = 0
self.left_blinker = False
self.right_blinker = False
@property
def speed(self):
return math.sqrt(self.velocity.x ** 2 + self.velocity.y ** 2 + self.velocity.z ** 2)
class World(ABC):
def __init__(self, dual_camera):
self.dual_camera = dual_camera
self.image_lock = threading.Lock()
self.road_image = np.zeros((H, W, 3), dtype=np.uint8)
self.wide_road_image = np.zeros((H, W, 3), dtype=np.uint8)
@abstractmethod
def apply_controls(self, steer_sim, throttle_out, brake_out):
pass
@abstractmethod
def tick(self):
pass
@abstractmethod
def read_sensors(self, simulator_state: SimulatorState):
pass
@abstractmethod
def read_cameras(self):
pass
@abstractmethod
def close(self):
pass
@abstractmethod
def reset(self):
pass

View File

@@ -0,0 +1,94 @@
import sys
import termios
import time
from termios import (BRKINT, CS8, CSIZE, ECHO, ICANON, ICRNL, IEXTEN, INPCK,
ISTRIP, IXON, PARENB, VMIN, VTIME)
from typing import NoReturn
# Indexes for termios list.
IFLAG = 0
OFLAG = 1
CFLAG = 2
LFLAG = 3
ISPEED = 4
OSPEED = 5
CC = 6
STDIN_FD = sys.stdin.fileno()
KEYBOARD_HELP = """
| key | functionality |
|------|-----------------------|
| 1 | Cruise Resume / Accel |
| 2 | Cruise Set / Decel |
| 3 | Cruise Cancel |
| r | Reset Simulation |
| i | Toggle Ignition |
| q | Exit all |
| wasd | Control manually |
"""
def getch() -> str:
old_settings = termios.tcgetattr(STDIN_FD)
try:
# set
mode = old_settings.copy()
mode[IFLAG] &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON)
#mode[OFLAG] &= ~(OPOST)
mode[CFLAG] &= ~(CSIZE | PARENB)
mode[CFLAG] |= CS8
mode[LFLAG] &= ~(ECHO | ICANON | IEXTEN)
mode[CC][VMIN] = 1
mode[CC][VTIME] = 0
termios.tcsetattr(STDIN_FD, termios.TCSAFLUSH, mode)
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(STDIN_FD, termios.TCSADRAIN, old_settings)
return ch
def keyboard_poll_thread(q: 'Queue[str]'):
while True:
c = getch()
if c == '1':
q.put("cruise_up")
elif c == '2':
q.put("cruise_down")
elif c == '3':
q.put("cruise_cancel")
elif c == 'w':
q.put("throttle_%f" % 1.0)
elif c == 'a':
q.put("steer_%f" % 0.15)
elif c == 's':
q.put("brake_%f" % 1.0)
elif c == 'd':
q.put("steer_%f" % -0.15)
elif c == 'z':
q.put("blinker_left")
elif c == 'x':
q.put("blinker_right")
elif c == 'i':
q.put("ignition")
elif c == 'r':
q.put("reset")
elif c == 'q':
q.put("quit")
break
def test(q: 'Queue[str]') -> NoReturn:
while True:
print([q.get_nowait() for _ in range(q.qsize())] or None)
time.sleep(0.25)
if __name__ == '__main__':
from multiprocessing import Process, Queue
q: Queue[str] = Queue()
p = Process(target=test, args=(q,))
p.daemon = True
p.start()
keyboard_poll_thread(q)

View File

@@ -0,0 +1,188 @@
#!/usr/bin/env python3
# set up wheel
import array
import os
import struct
from fcntl import ioctl
from typing import NoReturn, Dict, List
# Iterate over the joystick devices.
print('Available devices:')
for fn in os.listdir('/dev/input'):
if fn.startswith('js'):
print(f' /dev/input/{fn}')
# We'll store the states here.
axis_states: Dict[str, float] = {}
button_states: Dict[str, float] = {}
# These constants were borrowed from linux/input.h
axis_names = {
0x00 : 'x',
0x01 : 'y',
0x02 : 'z',
0x03 : 'rx',
0x04 : 'ry',
0x05 : 'rz',
0x06 : 'trottle',
0x07 : 'rudder',
0x08 : 'wheel',
0x09 : 'gas',
0x0a : 'brake',
0x10 : 'hat0x',
0x11 : 'hat0y',
0x12 : 'hat1x',
0x13 : 'hat1y',
0x14 : 'hat2x',
0x15 : 'hat2y',
0x16 : 'hat3x',
0x17 : 'hat3y',
0x18 : 'pressure',
0x19 : 'distance',
0x1a : 'tilt_x',
0x1b : 'tilt_y',
0x1c : 'tool_width',
0x20 : 'volume',
0x28 : 'misc',
}
button_names = {
0x120 : 'trigger',
0x121 : 'thumb',
0x122 : 'thumb2',
0x123 : 'top',
0x124 : 'top2',
0x125 : 'pinkie',
0x126 : 'base',
0x127 : 'base2',
0x128 : 'base3',
0x129 : 'base4',
0x12a : 'base5',
0x12b : 'base6',
0x12f : 'dead',
0x130 : 'a',
0x131 : 'b',
0x132 : 'c',
0x133 : 'x',
0x134 : 'y',
0x135 : 'z',
0x136 : 'tl',
0x137 : 'tr',
0x138 : 'tl2',
0x139 : 'tr2',
0x13a : 'select',
0x13b : 'start',
0x13c : 'mode',
0x13d : 'thumbl',
0x13e : 'thumbr',
0x220 : 'dpad_up',
0x221 : 'dpad_down',
0x222 : 'dpad_left',
0x223 : 'dpad_right',
# XBox 360 controller uses these codes.
0x2c0 : 'dpad_left',
0x2c1 : 'dpad_right',
0x2c2 : 'dpad_up',
0x2c3 : 'dpad_down',
}
axis_name_list: List[str] = []
button_name_list: List[str] = []
def wheel_poll_thread(q: 'Queue[str]') -> NoReturn:
# Open the joystick device.
fn = '/dev/input/js0'
print(f'Opening {fn}...')
jsdev = open(fn, 'rb')
# Get the device name.
#buf = bytearray(63)
buf = array.array('B', [0] * 64)
ioctl(jsdev, 0x80006a13 + (0x10000 * len(buf)), buf) # JSIOCGNAME(len)
js_name = buf.tobytes().rstrip(b'\x00').decode('utf-8')
print(f'Device name: {js_name}')
# Get number of axes and buttons.
buf = array.array('B', [0])
ioctl(jsdev, 0x80016a11, buf) # JSIOCGAXES
num_axes = buf[0]
buf = array.array('B', [0])
ioctl(jsdev, 0x80016a12, buf) # JSIOCGBUTTONS
num_buttons = buf[0]
# Get the axis map.
buf = array.array('B', [0] * 0x40)
ioctl(jsdev, 0x80406a32, buf) # JSIOCGAXMAP
for _axis in buf[:num_axes]:
axis_name = axis_names.get(_axis, f'unknown(0x{_axis:02x})')
axis_name_list.append(axis_name)
axis_states[axis_name] = 0.0
# Get the button map.
buf = array.array('H', [0] * 200)
ioctl(jsdev, 0x80406a34, buf) # JSIOCGBTNMAP
for btn in buf[:num_buttons]:
btn_name = button_names.get(btn, f'unknown(0x{btn:03x})')
button_name_list.append(btn_name)
button_states[btn_name] = 0
print('%d axes found: %s' % (num_axes, ', '.join(axis_name_list)))
print('%d buttons found: %s' % (num_buttons, ', '.join(button_name_list)))
# Enable FF
import evdev
from evdev import ecodes, InputDevice
device = evdev.list_devices()[0]
evtdev = InputDevice(device)
val = 24000
evtdev.write(ecodes.EV_FF, ecodes.FF_AUTOCENTER, val)
while True:
evbuf = jsdev.read(8)
value, mtype, number = struct.unpack('4xhBB', evbuf)
# print(mtype, number, value)
if mtype & 0x02: # wheel & paddles
axis = axis_name_list[number]
if axis == "z": # gas
fvalue = value / 32767.0
axis_states[axis] = fvalue
normalized = (1 - fvalue) * 50
q.put(f"throttle_{normalized:f}")
elif axis == "rz": # brake
fvalue = value / 32767.0
axis_states[axis] = fvalue
normalized = (1 - fvalue) * 50
q.put(f"brake_{normalized:f}")
elif axis == "x": # steer angle
fvalue = value / 32767.0
axis_states[axis] = fvalue
normalized = fvalue
q.put(f"steer_{normalized:f}")
elif mtype & 0x01: # buttons
if value == 1: # press down
if number in [0, 19]: # X
q.put("cruise_down")
elif number in [3, 18]: # triangle
q.put("cruise_up")
elif number in [1, 6]: # square
q.put("cruise_cancel")
elif number in [10, 21]: # R3
q.put("reverse_switch")
if __name__ == '__main__':
from multiprocessing import Process, Queue
q: Queue[str] = Queue()
p = Process(target=wheel_poll_thread, args=(q,))
p.start()

View File

@@ -0,0 +1,119 @@
import cereal.messaging as messaging
from opendbc.can.packer import CANPacker
from opendbc.can.parser import CANParser
from openpilot.selfdrive.boardd.boardd_api_impl import can_list_to_can_capnp
from openpilot.selfdrive.car import crc8_pedal
from openpilot.tools.sim.lib.common import SimulatorState
class SimulatedCar:
"""Simulates a honda civic 2016 (panda state + can messages) to OpenPilot"""
packer = CANPacker("honda_civic_touring_2016_can_generated")
rpacker = CANPacker("acura_ilx_2016_nidec")
def __init__(self):
self.pm = messaging.PubMaster(['can', 'pandaStates'])
self.sm = messaging.SubMaster(['carControl', 'controlsState', 'carParams'])
self.cp = self.get_car_can_parser()
self.idx = 0
@staticmethod
def get_car_can_parser():
dbc_f = 'honda_civic_touring_2016_can_generated'
checks = [
(0xe4, 100),
(0x1fa, 50),
(0x200, 50),
]
return CANParser(dbc_f, checks, 0)
def send_can_messages(self, simulator_state: SimulatorState):
if not simulator_state.valid:
return
msg = []
# *** powertrain bus ***
speed = simulator_state.speed * 3.6 # convert m/s to kph
msg.append(self.packer.make_can_msg("ENGINE_DATA", 0, {"XMISSION_SPEED": speed}))
msg.append(self.packer.make_can_msg("WHEEL_SPEEDS", 0, {
"WHEEL_SPEED_FL": speed,
"WHEEL_SPEED_FR": speed,
"WHEEL_SPEED_RL": speed,
"WHEEL_SPEED_RR": speed
}))
msg.append(self.packer.make_can_msg("SCM_BUTTONS", 0, {"CRUISE_BUTTONS": simulator_state.cruise_button}))
values = {
"COUNTER_PEDAL": self.idx & 0xF,
"INTERCEPTOR_GAS": simulator_state.user_gas * 2**12,
"INTERCEPTOR_GAS2": simulator_state.user_gas * 2**12,
}
checksum = crc8_pedal(self.packer.make_can_msg("GAS_SENSOR", 0, values)[2][:-1])
values["CHECKSUM_PEDAL"] = checksum
msg.append(self.packer.make_can_msg("GAS_SENSOR", 0, values))
msg.append(self.packer.make_can_msg("GEARBOX", 0, {"GEAR": 4, "GEAR_SHIFTER": 8}))
msg.append(self.packer.make_can_msg("GAS_PEDAL_2", 0, {}))
msg.append(self.packer.make_can_msg("SEATBELT_STATUS", 0, {"SEATBELT_DRIVER_LATCHED": 1}))
msg.append(self.packer.make_can_msg("STEER_STATUS", 0, {"STEER_TORQUE_SENSOR": simulator_state.user_torque}))
msg.append(self.packer.make_can_msg("STEERING_SENSORS", 0, {"STEER_ANGLE": simulator_state.steering_angle}))
msg.append(self.packer.make_can_msg("VSA_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("STANDSTILL", 0, {"WHEELS_MOVING": 1 if simulator_state.speed >= 1.0 else 0}))
msg.append(self.packer.make_can_msg("STEER_MOTOR_TORQUE", 0, {}))
msg.append(self.packer.make_can_msg("EPB_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("DOORS_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("CRUISE_PARAMS", 0, {}))
msg.append(self.packer.make_can_msg("CRUISE", 0, {}))
msg.append(self.packer.make_can_msg("SCM_FEEDBACK", 0,
{
"MAIN_ON": 1,
"LEFT_BLINKER": simulator_state.left_blinker,
"RIGHT_BLINKER": simulator_state.right_blinker
}))
msg.append(self.packer.make_can_msg("POWERTRAIN_DATA", 0,
{
"ACC_STATUS": int(simulator_state.is_engaged),
"PEDAL_GAS": simulator_state.user_gas,
"BRAKE_PRESSED": simulator_state.user_brake > 0
}))
msg.append(self.packer.make_can_msg("HUD_SETTING", 0, {}))
msg.append(self.packer.make_can_msg("CAR_SPEED", 0, {}))
# *** cam bus ***
msg.append(self.packer.make_can_msg("STEERING_CONTROL", 2, {}))
msg.append(self.packer.make_can_msg("ACC_HUD", 2, {}))
msg.append(self.packer.make_can_msg("LKAS_HUD", 2, {}))
msg.append(self.packer.make_can_msg("BRAKE_COMMAND", 2, {}))
# *** radar bus ***
if self.idx % 5 == 0:
msg.append(self.rpacker.make_can_msg("RADAR_DIAGNOSTIC", 1, {"RADAR_STATE": 0x79}))
for i in range(16):
msg.append(self.rpacker.make_can_msg("TRACK_%d" % i, 1, {"LONG_DIST": 255.5}))
self.pm.send('can', can_list_to_can_capnp(msg))
def send_panda_state(self, simulator_state):
self.sm.update(0)
dat = messaging.new_message('pandaStates', 1)
dat.valid = True
dat.pandaStates[0] = {
'ignitionLine': simulator_state.ignition,
'pandaType': "blackPanda",
'controlsAllowed': True,
'safetyModel': 'hondaNidec',
'alternativeExperience': self.sm["carParams"].alternativeExperience
}
self.pm.send('pandaStates', dat)
def update(self, simulator_state: SimulatorState):
self.send_can_messages(simulator_state)
if self.idx % 50 == 0: # only send panda states at 2hz
self.send_panda_state(simulator_state)
self.idx += 1

View File

@@ -0,0 +1,125 @@
import time
from cereal import log
import cereal.messaging as messaging
from openpilot.common.params import Params
from openpilot.common.realtime import DT_DMON
from openpilot.tools.sim.lib.camerad import Camerad
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from openpilot.tools.sim.lib.common import World, SimulatorState
class SimulatedSensors:
"""Simulates the C3 sensors (acc, gyro, gps, peripherals, dm state, cameras) to OpenPilot"""
def __init__(self, dual_camera=False):
self.pm = messaging.PubMaster(['accelerometer', 'gyroscope', 'gpsLocationExternal', 'driverStateV2', 'driverMonitoringState', 'peripheralState'])
self.camerad = Camerad(dual_camera=dual_camera)
self.last_perp_update = 0
self.last_dmon_update = 0
def send_imu_message(self, simulator_state: 'SimulatorState'):
for _ in range(5):
dat = messaging.new_message('accelerometer')
dat.accelerometer.sensor = 4
dat.accelerometer.type = 0x10
dat.accelerometer.timestamp = dat.logMonoTime # TODO: use the IMU timestamp
dat.accelerometer.init('acceleration')
dat.accelerometer.acceleration.v = [simulator_state.imu.accelerometer.x, simulator_state.imu.accelerometer.y, simulator_state.imu.accelerometer.z]
self.pm.send('accelerometer', dat)
# copied these numbers from locationd
dat = messaging.new_message('gyroscope')
dat.gyroscope.sensor = 5
dat.gyroscope.type = 0x10
dat.gyroscope.timestamp = dat.logMonoTime # TODO: use the IMU timestamp
dat.gyroscope.init('gyroUncalibrated')
dat.gyroscope.gyroUncalibrated.v = [simulator_state.imu.gyroscope.x, simulator_state.imu.gyroscope.y, simulator_state.imu.gyroscope.z]
self.pm.send('gyroscope', dat)
def send_gps_message(self, simulator_state: 'SimulatorState'):
if not simulator_state.valid:
return
# transform vel from carla to NED
# north is -Y in CARLA
velNED = [
-simulator_state.velocity.y, # north/south component of NED is negative when moving south
simulator_state.velocity.x, # positive when moving east, which is x in carla
simulator_state.velocity.z,
]
for _ in range(10):
dat = messaging.new_message('gpsLocationExternal')
dat.gpsLocationExternal = {
"unixTimestampMillis": int(time.time() * 1000),
"flags": 1, # valid fix
"accuracy": 1.0,
"verticalAccuracy": 1.0,
"speedAccuracy": 0.1,
"bearingAccuracyDeg": 0.1,
"vNED": velNED,
"bearingDeg": simulator_state.imu.bearing,
"latitude": simulator_state.gps.latitude,
"longitude": simulator_state.gps.longitude,
"altitude": simulator_state.gps.altitude,
"speed": simulator_state.speed,
"source": log.GpsLocationData.SensorSource.ublox,
}
self.pm.send('gpsLocationExternal', dat)
def send_peripheral_state(self):
dat = messaging.new_message('peripheralState')
dat.valid = True
dat.peripheralState = {
'pandaType': log.PandaState.PandaType.blackPanda,
'voltage': 12000,
'current': 5678,
'fanSpeedRpm': 1000
}
Params().put_bool("ObdMultiplexingEnabled", False)
self.pm.send('peripheralState', dat)
def send_fake_driver_monitoring(self):
# dmonitoringmodeld output
dat = messaging.new_message('driverStateV2')
dat.driverStateV2.leftDriverData.faceOrientation = [0., 0., 0.]
dat.driverStateV2.leftDriverData.faceProb = 1.0
dat.driverStateV2.rightDriverData.faceOrientation = [0., 0., 0.]
dat.driverStateV2.rightDriverData.faceProb = 1.0
self.pm.send('driverStateV2', dat)
# dmonitoringd output
dat = messaging.new_message('driverMonitoringState')
dat.driverMonitoringState = {
"faceDetected": True,
"isDistracted": False,
"awarenessStatus": 1.,
}
self.pm.send('driverMonitoringState', dat)
def send_camera_images(self, world: 'World'):
with world.image_lock:
yuv = self.camerad.rgb_to_yuv(world.road_image)
self.camerad.cam_send_yuv_road(yuv)
if world.dual_camera:
yuv = self.camerad.rgb_to_yuv(world.wide_road_image)
self.camerad.cam_send_yuv_wide_road(yuv)
def update(self, simulator_state: 'SimulatorState', world: 'World'):
now = time.time()
self.send_imu_message(simulator_state)
self.send_gps_message(simulator_state)
if (now - self.last_dmon_update) > DT_DMON/2:
self.send_fake_driver_monitoring()
self.last_dmon_update = now
if (now - self.last_perp_update) > 0.25:
self.send_peripheral_state()
self.last_perp_update = now

119
tools/sim/rgb_to_nv12.cl Normal file
View File

@@ -0,0 +1,119 @@
#define RGB_TO_Y(r, g, b) ((((mul24(b, 13) + mul24(g, 65) + mul24(r, 33)) + 64) >> 7) + 16)
#define RGB_TO_U(r, g, b) ((mul24(b, 56) - mul24(g, 37) - mul24(r, 19) + 0x8080) >> 8)
#define RGB_TO_V(r, g, b) ((mul24(r, 56) - mul24(g, 47) - mul24(b, 9) + 0x8080) >> 8)
#define AVERAGE(x, y, z, w) ((convert_ushort(x) + convert_ushort(y) + convert_ushort(z) + convert_ushort(w) + 1) >> 1)
inline void convert_2_ys(__global uchar * out_yuv, int yi, const uchar8 rgbs1) {
uchar2 yy = (uchar2)(
RGB_TO_Y(rgbs1.s2, rgbs1.s1, rgbs1.s0),
RGB_TO_Y(rgbs1.s5, rgbs1.s4, rgbs1.s3)
);
#ifdef CL_DEBUG
if(yi >= RGB_SIZE)
printf("Y vector2 overflow, %d > %d\n", yi, RGB_SIZE);
#endif
vstore2(yy, 0, out_yuv + yi);
}
inline void convert_4_ys(__global uchar * out_yuv, int yi, const uchar8 rgbs1, const uchar8 rgbs3) {
const uchar4 yy = (uchar4)(
RGB_TO_Y(rgbs1.s2, rgbs1.s1, rgbs1.s0),
RGB_TO_Y(rgbs1.s5, rgbs1.s4, rgbs1.s3),
RGB_TO_Y(rgbs3.s0, rgbs1.s7, rgbs1.s6),
RGB_TO_Y(rgbs3.s3, rgbs3.s2, rgbs3.s1)
);
#ifdef CL_DEBUG
if(yi > RGB_SIZE - 4)
printf("Y vector4 overflow, %d > %d\n", yi, RGB_SIZE - 4);
#endif
vstore4(yy, 0, out_yuv + yi);
}
inline void convert_uv(__global uchar * out_yuv, int uvi,
const uchar8 rgbs1, const uchar8 rgbs2) {
// U & V: average of 2x2 pixels square
const short ab = AVERAGE(rgbs1.s0, rgbs1.s3, rgbs2.s0, rgbs2.s3);
const short ag = AVERAGE(rgbs1.s1, rgbs1.s4, rgbs2.s1, rgbs2.s4);
const short ar = AVERAGE(rgbs1.s2, rgbs1.s5, rgbs2.s2, rgbs2.s5);
#ifdef CL_DEBUG
if(uvi >= RGB_SIZE + RGB_SIZE / 2)
printf("UV overflow, %d >= %d\n", uvi, RGB_SIZE + RGB_SIZE / 2);
#endif
out_yuv[uvi] = RGB_TO_U(ar, ag, ab);
out_yuv[uvi+1] = RGB_TO_V(ar, ag, ab);
}
inline void convert_2_uvs(__global uchar * out_yuv, int uvi,
const uchar8 rgbs1, const uchar8 rgbs2, const uchar8 rgbs3, const uchar8 rgbs4) {
// U & V: average of 2x2 pixels square
const short ab1 = AVERAGE(rgbs1.s0, rgbs1.s3, rgbs2.s0, rgbs2.s3);
const short ag1 = AVERAGE(rgbs1.s1, rgbs1.s4, rgbs2.s1, rgbs2.s4);
const short ar1 = AVERAGE(rgbs1.s2, rgbs1.s5, rgbs2.s2, rgbs2.s5);
const short ab2 = AVERAGE(rgbs1.s6, rgbs3.s1, rgbs2.s6, rgbs4.s1);
const short ag2 = AVERAGE(rgbs1.s7, rgbs3.s2, rgbs2.s7, rgbs4.s2);
const short ar2 = AVERAGE(rgbs3.s0, rgbs3.s3, rgbs4.s0, rgbs4.s3);
uchar4 uv = (uchar4)(
RGB_TO_U(ar1, ag1, ab1),
RGB_TO_V(ar1, ag1, ab1),
RGB_TO_U(ar2, ag2, ab2),
RGB_TO_V(ar2, ag2, ab2)
);
#ifdef CL_DEBUG1
if(uvi > RGB_SIZE + RGB_SIZE / 2 - 4)
printf("UV2 overflow, %d >= %d\n", uvi, RGB_SIZE + RGB_SIZE / 2 - 2);
#endif
vstore4(uv, 0, out_yuv + uvi);
}
__kernel void rgb_to_nv12(__global uchar const * const rgb,
__global uchar * out_yuv)
{
const int dx = get_global_id(0);
const int dy = get_global_id(1);
const int col = mul24(dx, 4); // Current column in rgb image
const int row = mul24(dy, 4); // Current row in rgb image
const int bgri_start = mad24(row, RGB_STRIDE, mul24(col, 3)); // Start offset of rgb data being converted
const int yi_start = mad24(row, WIDTH, col); // Start offset in the target yuv buffer
int uvi = mad24(row / 2, WIDTH, RGB_SIZE + col);
int num_col = min(WIDTH - col, 4);
int num_row = min(HEIGHT - row, 4);
if(num_row == 4) {
const uchar8 rgbs0_0 = vload8(0, rgb + bgri_start);
const uchar8 rgbs0_1 = vload8(0, rgb + bgri_start + 8);
const uchar8 rgbs1_0 = vload8(0, rgb + bgri_start + RGB_STRIDE);
const uchar8 rgbs1_1 = vload8(0, rgb + bgri_start + RGB_STRIDE + 8);
const uchar8 rgbs2_0 = vload8(0, rgb + bgri_start + RGB_STRIDE * 2);
const uchar8 rgbs2_1 = vload8(0, rgb + bgri_start + RGB_STRIDE * 2 + 8);
const uchar8 rgbs3_0 = vload8(0, rgb + bgri_start + RGB_STRIDE * 3);
const uchar8 rgbs3_1 = vload8(0, rgb + bgri_start + RGB_STRIDE * 3 + 8);
if(num_col == 4) {
convert_4_ys(out_yuv, yi_start, rgbs0_0, rgbs0_1);
convert_4_ys(out_yuv, yi_start + WIDTH, rgbs1_0, rgbs1_1);
convert_4_ys(out_yuv, yi_start + WIDTH * 2, rgbs2_0, rgbs2_1);
convert_4_ys(out_yuv, yi_start + WIDTH * 3, rgbs3_0, rgbs3_1);
convert_2_uvs(out_yuv, uvi, rgbs0_0, rgbs1_0, rgbs0_1, rgbs1_1);
convert_2_uvs(out_yuv, uvi + WIDTH, rgbs2_0, rgbs3_0, rgbs2_1, rgbs3_1);
} else if(num_col == 2) {
convert_2_ys(out_yuv, yi_start, rgbs0_0);
convert_2_ys(out_yuv, yi_start + WIDTH, rgbs1_0);
convert_2_ys(out_yuv, yi_start + WIDTH * 2, rgbs2_0);
convert_2_ys(out_yuv, yi_start + WIDTH * 3, rgbs3_0);
convert_uv(out_yuv, uvi, rgbs0_0, rgbs1_0);
convert_uv(out_yuv, uvi + WIDTH, rgbs2_0, rgbs3_0);
}
} else {
const uchar8 rgbs0_0 = vload8(0, rgb + bgri_start);
const uchar8 rgbs0_1 = vload8(0, rgb + bgri_start + 8);
const uchar8 rgbs1_0 = vload8(0, rgb + bgri_start + RGB_STRIDE);
const uchar8 rgbs1_1 = vload8(0, rgb + bgri_start + RGB_STRIDE + 8);
if(num_col == 4) {
convert_4_ys(out_yuv, yi_start, rgbs0_0, rgbs0_1);
convert_4_ys(out_yuv, yi_start + WIDTH, rgbs1_0, rgbs1_1);
convert_2_uvs(out_yuv, uvi, rgbs0_0, rgbs1_0, rgbs0_1, rgbs1_1);
} else if(num_col == 2) {
convert_2_ys(out_yuv, yi_start, rgbs0_0);
convert_2_ys(out_yuv, yi_start + WIDTH, rgbs1_0);
convert_uv(out_yuv, uvi, rgbs0_0, rgbs1_0);
}
}
}

54
tools/sim/run_bridge.py Normal file
View File

@@ -0,0 +1,54 @@
#!/usr/bin/env python
import argparse
import os
from typing import Any
from multiprocessing import Queue
from openpilot.tools.sim.bridge.common import SimulatorBridge
from openpilot.tools.sim.bridge.carla.carla_bridge import CarlaBridge
from openpilot.tools.sim.bridge.metadrive.metadrive_bridge import MetaDriveBridge
def parse_args(add_args=None):
parser = argparse.ArgumentParser(description='Bridge between the simulator and openpilot.')
parser.add_argument('--joystick', action='store_true')
parser.add_argument('--high_quality', action='store_true')
parser.add_argument('--dual_camera', action='store_true')
parser.add_argument('--simulator', dest='simulator', type=str, default='metadrive')
# Carla specific
parser.add_argument('--town', type=str, default='Town04_Opt')
parser.add_argument('--spawn_point', dest='num_selected_spawn_point', type=int, default=16)
parser.add_argument('--host', dest='host', type=str, default=os.environ.get("CARLA_HOST", '127.0.0.1'))
parser.add_argument('--port', dest='port', type=int, default=2000)
return parser.parse_args(add_args)
if __name__ == "__main__":
q: Any = Queue()
args = parse_args()
simulator_bridge: SimulatorBridge
if args.simulator == "carla":
simulator_bridge = CarlaBridge(args)
elif args.simulator == "metadrive":
simulator_bridge = MetaDriveBridge(args)
else:
raise AssertionError("simulator type not supported")
p = simulator_bridge.run(q)
if args.joystick:
# start input poll for joystick
from openpilot.tools.sim.lib.manual_ctrl import wheel_poll_thread
wheel_poll_thread(q)
else:
# start input poll for keyboard
from openpilot.tools.sim.lib.keyboard_ctrl import keyboard_poll_thread
keyboard_poll_thread(q)
simulator_bridge.shutdown()
p.join()

34
tools/sim/start_carla.sh Normal file
View File

@@ -0,0 +1,34 @@
#!/bin/bash
# Requires nvidia docker - https://github.com/NVIDIA/nvidia-docker
if ! $(apt list --installed | grep -q nvidia-container-toolkit); then
read -p "Nvidia docker is required. Do you want to install it now? (y/n)";
if [ "${REPLY}" == "y" ]; then
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
echo $distribution
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-docker2 # Also installs docker-ce and nvidia-container-toolkit
sudo systemctl restart docker
else
exit 0
fi
fi
docker pull carlasim/carla:0.9.14
EXTRA_ARGS="-it"
if [[ "$DETACH" ]]; then
EXTRA_ARGS="-d"
fi
docker kill carla_sim || true
docker run \
--name carla_sim \
--rm \
--gpus all \
--net=host \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
$EXTRA_ARGS \
carlasim/carla:0.9.14 \
/bin/bash ./CarlaUE4.sh -opengl -nosound -RenderOffScreen -benchmark -fps=20 -quality-level=Low

View File

@@ -0,0 +1,37 @@
#!/bin/bash
DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)"
cd $DIR
OPENPILOT_DIR="/tmp/openpilot"
if ! [[ -z "$MOUNT_OPENPILOT" ]]; then
OPENPILOT_DIR="$(dirname $(dirname $DIR))"
EXTRA_ARGS="-v $OPENPILOT_DIR:$OPENPILOT_DIR -e PYTHONPATH=$OPENPILOT_DIR:$PYTHONPATH"
fi
if [[ "$CI" ]]; then
CMD="CI=1 ${OPENPILOT_DIR}/tools/sim/tests/test_carla_integration.py"
else
# expose X to the container
xhost +local:root
docker pull ghcr.io/commaai/openpilot-sim:latest
CMD="./tmux_script.sh $*"
EXTRA_ARGS="${EXTRA_ARGS} -it"
fi
docker kill openpilot_client || true
docker run --net=host\
--name openpilot_client \
--rm \
--gpus all \
--device=/dev/dri:/dev/dri \
--device=/dev/input:/dev/input \
-v /tmp/.X11-unix:/tmp/.X11-unix \
--shm-size 1G \
-e DISPLAY=$DISPLAY \
-e QT_X11_NO_MITSHM=1 \
-w "$OPENPILOT_DIR/tools/sim" \
$EXTRA_ARGS \
ghcr.io/commaai/openpilot-sim:latest \
/bin/bash -c "$CMD"

View File

View File

@@ -0,0 +1,45 @@
#!/usr/bin/env python3
import subprocess
import time
import unittest
from subprocess import Popen
from openpilot.selfdrive.manager.helpers import unblock_stdout
from openpilot.tools.sim.run_bridge import parse_args
from openpilot.tools.sim.bridge.carla.carla_bridge import CarlaBridge
from openpilot.tools.sim.tests.test_sim_bridge import SIM_DIR, TestSimBridgeBase
from typing import Optional
class TestCarlaBridge(TestSimBridgeBase):
"""
Tests need Carla simulator to run
"""
carla_process: Optional[Popen] = None
def setUp(self):
super().setUp()
# We want to make sure that carla_sim docker isn't still running.
subprocess.run("docker rm -f carla_sim", shell=True, stderr=subprocess.PIPE, check=False)
self.carla_process = subprocess.Popen("./start_carla.sh", cwd=SIM_DIR)
# Too many lagging messages in bridge.py can cause a crash. This prevents it.
unblock_stdout()
# Wait 10 seconds to startup carla
time.sleep(10)
def create_bridge(self):
return CarlaBridge(parse_args([]))
def tearDown(self):
super().tearDown()
# Stop carla simulator by removing docker container
subprocess.run("docker rm -f carla_sim", shell=True, stderr=subprocess.PIPE, check=False)
if self.carla_process is not None:
self.carla_process.wait()
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,15 @@
#!/usr/bin/env python3
import unittest
from openpilot.tools.sim.run_bridge import parse_args
from openpilot.tools.sim.bridge.metadrive.metadrive_bridge import MetaDriveBridge
from openpilot.tools.sim.tests.test_sim_bridge import TestSimBridgeBase
class TestMetaDriveBridge(TestSimBridgeBase):
def create_bridge(self):
return MetaDriveBridge(parse_args([]))
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,88 @@
import os
import subprocess
import time
import unittest
from multiprocessing import Queue
from cereal import messaging
from openpilot.common.basedir import BASEDIR
SIM_DIR = os.path.join(BASEDIR, "tools/sim")
class TestSimBridgeBase(unittest.TestCase):
@classmethod
def setUpClass(cls):
if cls is TestSimBridgeBase:
raise unittest.SkipTest("Don't run this base class, run test_carla_bridge.py instead")
def setUp(self):
self.processes = []
def test_engage(self):
# Startup manager and bridge.py. Check processes are running, then engage and verify.
p_manager = subprocess.Popen("./launch_openpilot.sh", cwd=SIM_DIR)
self.processes.append(p_manager)
sm = messaging.SubMaster(['controlsState', 'onroadEvents', 'managerState'])
q = Queue()
carla_bridge = self.create_bridge()
p_bridge = carla_bridge.run(q, retries=10)
self.processes.append(p_bridge)
max_time_per_step = 60
# Wait for bridge to startup
start_waiting = time.monotonic()
while not carla_bridge.started and time.monotonic() < start_waiting + max_time_per_step:
time.sleep(0.1)
self.assertEqual(p_bridge.exitcode, None, f"Bridge process should be running, but exited with code {p_bridge.exitcode}")
start_time = time.monotonic()
no_car_events_issues_once = False
car_event_issues = []
not_running = []
while time.monotonic() < start_time + max_time_per_step:
sm.update()
not_running = [p.name for p in sm['managerState'].processes if not p.running and p.shouldBeRunning]
car_event_issues = [event.name for event in sm['onroadEvents'] if any([event.noEntry, event.softDisable, event.immediateDisable])]
if sm.all_alive() and len(car_event_issues) == 0 and len(not_running) == 0:
no_car_events_issues_once = True
break
self.assertTrue(no_car_events_issues_once,
f"Failed because no messages received, or CarEvents '{car_event_issues}' or processes not running '{not_running}'")
start_time = time.monotonic()
min_counts_control_active = 100
control_active = 0
while time.monotonic() < start_time + max_time_per_step:
sm.update()
q.put("cruise_down") # Try engaging
if sm.all_alive() and sm['controlsState'].active:
control_active += 1
if control_active == min_counts_control_active:
break
self.assertEqual(min_counts_control_active, control_active, f"Simulator did not engage a minimal of {min_counts_control_active} steps was {control_active}")
def tearDown(self):
print("Test shutting down. CommIssues are acceptable")
for p in reversed(self.processes):
p.terminate()
for p in reversed(self.processes):
if isinstance(p, subprocess.Popen):
p.wait(15)
else:
p.join(15)
if __name__ == "__main__":
unittest.main()

6
tools/sim/tmux_script.sh Normal file
View File

@@ -0,0 +1,6 @@
#!/bin/bash
tmux new -d -s carla-sim
tmux send-keys "./launch_openpilot.sh" ENTER
tmux neww
tmux send-keys "./run_bridge.py $*" ENTER
tmux a -t carla-sim