openpilot v0.9.6 release
date: 2024-01-12T10:13:37 master commit: ba792d576a49a0899b88a753fa1c52956bedf9e6
This commit is contained in:
0
selfdrive/controls/__init__.py
Normal file
0
selfdrive/controls/__init__.py
Normal file
899
selfdrive/controls/controlsd.py
Executable file
899
selfdrive/controls/controlsd.py
Executable file
@@ -0,0 +1,899 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import math
|
||||
import time
|
||||
import threading
|
||||
from typing import SupportsFloat
|
||||
|
||||
from cereal import car, log
|
||||
from openpilot.common.numpy_fast import clip
|
||||
from openpilot.common.realtime import config_realtime_process, Priority, Ratekeeper, DT_CTRL
|
||||
from openpilot.common.params import Params
|
||||
import cereal.messaging as messaging
|
||||
from cereal.visionipc import VisionIpcClient, VisionStreamType
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from panda import ALTERNATIVE_EXPERIENCE
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.system.version import get_short_branch
|
||||
from openpilot.selfdrive.boardd.boardd import can_list_to_can_capnp
|
||||
from openpilot.selfdrive.car.car_helpers import get_car, get_startup_event, get_one_can
|
||||
from openpilot.selfdrive.controls.lib.lateral_planner import CAMERA_OFFSET
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import VCruiseHelper, get_lag_adjusted_curvature
|
||||
from openpilot.selfdrive.controls.lib.latcontrol import LatControl, MIN_LATERAL_CONTROL_SPEED
|
||||
from openpilot.selfdrive.controls.lib.longcontrol import LongControl
|
||||
from openpilot.selfdrive.controls.lib.latcontrol_pid import LatControlPID
|
||||
from openpilot.selfdrive.controls.lib.latcontrol_angle import LatControlAngle, STEER_ANGLE_SATURATION_THRESHOLD
|
||||
from openpilot.selfdrive.controls.lib.latcontrol_torque import LatControlTorque
|
||||
from openpilot.selfdrive.controls.lib.events import Events, ET
|
||||
from openpilot.selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert
|
||||
from openpilot.selfdrive.controls.lib.vehicle_model import VehicleModel
|
||||
from openpilot.system.hardware import HARDWARE
|
||||
|
||||
SOFT_DISABLE_TIME = 3 # seconds
|
||||
LDW_MIN_SPEED = 31 * CV.MPH_TO_MS
|
||||
LANE_DEPARTURE_THRESHOLD = 0.1
|
||||
|
||||
REPLAY = "REPLAY" in os.environ
|
||||
SIMULATION = "SIMULATION" in os.environ
|
||||
TESTING_CLOSET = "TESTING_CLOSET" in os.environ
|
||||
IGNORE_PROCESSES = {"loggerd", "encoderd", "statsd"}
|
||||
|
||||
ThermalStatus = log.DeviceState.ThermalStatus
|
||||
State = log.ControlsState.OpenpilotState
|
||||
PandaType = log.PandaState.PandaType
|
||||
Desire = log.LateralPlan.Desire
|
||||
LaneChangeState = log.LateralPlan.LaneChangeState
|
||||
LaneChangeDirection = log.LateralPlan.LaneChangeDirection
|
||||
EventName = car.CarEvent.EventName
|
||||
ButtonType = car.CarState.ButtonEvent.Type
|
||||
SafetyModel = car.CarParams.SafetyModel
|
||||
|
||||
IGNORED_SAFETY_MODES = (SafetyModel.silent, SafetyModel.noOutput)
|
||||
CSID_MAP = {"1": EventName.roadCameraError, "2": EventName.wideRoadCameraError, "0": EventName.driverCameraError}
|
||||
ACTUATOR_FIELDS = tuple(car.CarControl.Actuators.schema.fields.keys())
|
||||
ACTIVE_STATES = (State.enabled, State.softDisabling, State.overriding)
|
||||
ENABLED_STATES = (State.preEnabled, *ACTIVE_STATES)
|
||||
|
||||
|
||||
class Controls:
|
||||
def __init__(self, CI=None):
|
||||
config_realtime_process(4, Priority.CTRL_HIGH)
|
||||
|
||||
# Ensure the current branch is cached, otherwise the first iteration of controlsd lags
|
||||
self.branch = get_short_branch("")
|
||||
|
||||
# Setup sockets
|
||||
self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState',
|
||||
'carControl', 'onroadEvents', 'carParams'])
|
||||
|
||||
self.sensor_packets = ["accelerometer", "gyroscope"]
|
||||
self.camera_packets = ["roadCameraState", "driverCameraState", "wideRoadCameraState"]
|
||||
|
||||
self.log_sock = messaging.sub_sock('androidLog')
|
||||
self.can_sock = messaging.sub_sock('can', timeout=20)
|
||||
|
||||
self.params = Params()
|
||||
ignore = self.sensor_packets + ['testJoystick']
|
||||
if SIMULATION:
|
||||
ignore += ['driverCameraState', 'managerState']
|
||||
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
|
||||
'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman',
|
||||
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters',
|
||||
'testJoystick'] + self.camera_packets + self.sensor_packets,
|
||||
ignore_alive=ignore, ignore_avg_freq=['radarState', 'testJoystick'], ignore_valid=['testJoystick', ])
|
||||
|
||||
if CI is None:
|
||||
# wait for one pandaState and one CAN packet
|
||||
print("Waiting for CAN messages...")
|
||||
get_one_can(self.can_sock)
|
||||
|
||||
num_pandas = len(messaging.recv_one_retry(self.sm.sock['pandaStates']).pandaStates)
|
||||
experimental_long_allowed = self.params.get_bool("ExperimentalLongitudinalEnabled")
|
||||
self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], experimental_long_allowed, num_pandas)
|
||||
else:
|
||||
self.CI, self.CP = CI, CI.CP
|
||||
|
||||
self.joystick_mode = self.params.get_bool("JoystickDebugMode")
|
||||
|
||||
# set alternative experiences from parameters
|
||||
self.disengage_on_accelerator = self.params.get_bool("DisengageOnAccelerator")
|
||||
self.CP.alternativeExperience = 0
|
||||
if not self.disengage_on_accelerator:
|
||||
self.CP.alternativeExperience |= ALTERNATIVE_EXPERIENCE.DISABLE_DISENGAGE_ON_GAS
|
||||
|
||||
# read params
|
||||
self.is_metric = self.params.get_bool("IsMetric")
|
||||
self.is_ldw_enabled = self.params.get_bool("IsLdwEnabled")
|
||||
openpilot_enabled_toggle = self.params.get_bool("OpenpilotEnabledToggle")
|
||||
passive = self.params.get_bool("Passive") or not openpilot_enabled_toggle
|
||||
|
||||
# detect sound card presence and ensure successful init
|
||||
sounds_available = HARDWARE.get_sound_card_online()
|
||||
|
||||
car_recognized = self.CP.carName != 'mock'
|
||||
|
||||
controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly
|
||||
self.CP.passive = not car_recognized or not controller_available or self.CP.dashcamOnly
|
||||
if self.CP.passive:
|
||||
safety_config = car.CarParams.SafetyConfig.new_message()
|
||||
safety_config.safetyModel = car.CarParams.SafetyModel.noOutput
|
||||
self.CP.safetyConfigs = [safety_config]
|
||||
|
||||
# Write previous route's CarParams
|
||||
prev_cp = self.params.get("CarParamsPersistent")
|
||||
if prev_cp is not None:
|
||||
self.params.put("CarParamsPrevRoute", prev_cp)
|
||||
|
||||
# Write CarParams for radard
|
||||
cp_bytes = self.CP.to_bytes()
|
||||
self.params.put("CarParams", cp_bytes)
|
||||
self.params.put_nonblocking("CarParamsCache", cp_bytes)
|
||||
self.params.put_nonblocking("CarParamsPersistent", cp_bytes)
|
||||
|
||||
# cleanup old params
|
||||
if not self.CP.experimentalLongitudinalAvailable:
|
||||
self.params.remove("ExperimentalLongitudinalEnabled")
|
||||
if not self.CP.openpilotLongitudinalControl:
|
||||
self.params.remove("ExperimentalMode")
|
||||
|
||||
self.CC = car.CarControl.new_message()
|
||||
self.CS_prev = car.CarState.new_message()
|
||||
self.AM = AlertManager()
|
||||
self.events = Events()
|
||||
|
||||
self.LoC = LongControl(self.CP)
|
||||
self.VM = VehicleModel(self.CP)
|
||||
|
||||
self.LaC: LatControl
|
||||
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
|
||||
self.LaC = LatControlAngle(self.CP, self.CI)
|
||||
elif self.CP.lateralTuning.which() == 'pid':
|
||||
self.LaC = LatControlPID(self.CP, self.CI)
|
||||
elif self.CP.lateralTuning.which() == 'torque':
|
||||
self.LaC = LatControlTorque(self.CP, self.CI)
|
||||
|
||||
self.initialized = False
|
||||
self.state = State.disabled
|
||||
self.enabled = False
|
||||
self.active = False
|
||||
self.soft_disable_timer = 0
|
||||
self.mismatch_counter = 0
|
||||
self.cruise_mismatch_counter = 0
|
||||
self.can_rcv_timeout_counter = 0 # conseuctive timeout count
|
||||
self.can_rcv_cum_timeout_counter = 0 # cumulative timeout count
|
||||
self.last_blinker_frame = 0
|
||||
self.last_steering_pressed_frame = 0
|
||||
self.distance_traveled = 0
|
||||
self.last_functional_fan_frame = 0
|
||||
self.events_prev = []
|
||||
self.current_alert_types = [ET.PERMANENT]
|
||||
self.logged_comm_issue = None
|
||||
self.not_running_prev = None
|
||||
self.last_actuators = car.CarControl.Actuators.new_message()
|
||||
self.steer_limited = False
|
||||
self.desired_curvature = 0.0
|
||||
self.desired_curvature_rate = 0.0
|
||||
self.experimental_mode = False
|
||||
self.v_cruise_helper = VCruiseHelper(self.CP)
|
||||
self.recalibrating_seen = False
|
||||
|
||||
self.can_log_mono_time = 0
|
||||
|
||||
self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0)
|
||||
|
||||
if not sounds_available:
|
||||
self.events.add(EventName.soundsUnavailable, static=True)
|
||||
if not car_recognized:
|
||||
self.events.add(EventName.carUnrecognized, static=True)
|
||||
if len(self.CP.carFw) > 0:
|
||||
set_offroad_alert("Offroad_CarUnrecognized", True)
|
||||
else:
|
||||
set_offroad_alert("Offroad_NoFirmware", True)
|
||||
elif self.CP.passive:
|
||||
self.events.add(EventName.dashcamMode, static=True)
|
||||
|
||||
# controlsd is driven by can recv, expected at 100Hz
|
||||
self.rk = Ratekeeper(100, print_delay_threshold=None)
|
||||
|
||||
def set_initial_state(self):
|
||||
if REPLAY:
|
||||
controls_state = Params().get("ReplayControlsState")
|
||||
if controls_state is not None:
|
||||
with log.ControlsState.from_bytes(controls_state) as controls_state:
|
||||
self.v_cruise_helper.v_cruise_kph = controls_state.vCruise
|
||||
|
||||
if any(ps.controlsAllowed for ps in self.sm['pandaStates']):
|
||||
self.state = State.enabled
|
||||
|
||||
def update_events(self, CS):
|
||||
"""Compute onroadEvents from carState"""
|
||||
|
||||
self.events.clear()
|
||||
|
||||
# Add joystick event, static on cars, dynamic on nonCars
|
||||
if self.joystick_mode:
|
||||
self.events.add(EventName.joystickDebug)
|
||||
self.startup_event = None
|
||||
|
||||
# Add startup event
|
||||
if self.startup_event is not None:
|
||||
self.events.add(self.startup_event)
|
||||
self.startup_event = None
|
||||
|
||||
# Don't add any more events if not initialized
|
||||
if not self.initialized:
|
||||
self.events.add(EventName.controlsInitializing)
|
||||
return
|
||||
|
||||
# no more events while in dashcam mode
|
||||
if self.CP.passive:
|
||||
return
|
||||
|
||||
# Block resume if cruise never previously enabled
|
||||
resume_pressed = any(be.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for be in CS.buttonEvents)
|
||||
if not self.CP.pcmCruise and not self.v_cruise_helper.v_cruise_initialized and resume_pressed:
|
||||
self.events.add(EventName.resumeBlocked)
|
||||
|
||||
# Disable on rising edge of accelerator or brake. Also disable on brake when speed > 0
|
||||
if (CS.gasPressed and not self.CS_prev.gasPressed and self.disengage_on_accelerator) or \
|
||||
(CS.brakePressed and (not self.CS_prev.brakePressed or not CS.standstill)) or \
|
||||
(CS.regenBraking and (not self.CS_prev.regenBraking or not CS.standstill)):
|
||||
self.events.add(EventName.pedalPressed)
|
||||
|
||||
if CS.brakePressed and CS.standstill:
|
||||
self.events.add(EventName.preEnableStandstill)
|
||||
|
||||
if CS.gasPressed:
|
||||
self.events.add(EventName.gasPressedOverride)
|
||||
|
||||
if not self.CP.notCar:
|
||||
self.events.add_from_msg(self.sm['driverMonitoringState'].events)
|
||||
|
||||
# Add car events, ignore if CAN isn't valid
|
||||
if CS.canValid:
|
||||
self.events.add_from_msg(CS.events)
|
||||
|
||||
# Create events for temperature, disk space, and memory
|
||||
if self.sm['deviceState'].thermalStatus >= ThermalStatus.red:
|
||||
self.events.add(EventName.overheat)
|
||||
if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION:
|
||||
# under 7% of space free no enable allowed
|
||||
self.events.add(EventName.outOfSpace)
|
||||
if self.sm['deviceState'].memoryUsagePercent > 90 and not SIMULATION:
|
||||
self.events.add(EventName.lowMemory)
|
||||
|
||||
# TODO: enable this once loggerd CPU usage is more reasonable
|
||||
#cpus = list(self.sm['deviceState'].cpuUsagePercent)
|
||||
#if max(cpus, default=0) > 95 and not SIMULATION:
|
||||
# self.events.add(EventName.highCpuUsage)
|
||||
|
||||
# Alert if fan isn't spinning for 5 seconds
|
||||
if self.sm['peripheralState'].pandaType != log.PandaState.PandaType.unknown:
|
||||
if self.sm['peripheralState'].fanSpeedRpm < 500 and self.sm['deviceState'].fanSpeedPercentDesired > 50:
|
||||
# allow enough time for the fan controller in the panda to recover from stalls
|
||||
if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 15.0:
|
||||
self.events.add(EventName.fanMalfunction)
|
||||
else:
|
||||
self.last_functional_fan_frame = self.sm.frame
|
||||
|
||||
# Handle calibration status
|
||||
cal_status = self.sm['liveCalibration'].calStatus
|
||||
if cal_status != log.LiveCalibrationData.Status.calibrated:
|
||||
if cal_status == log.LiveCalibrationData.Status.uncalibrated:
|
||||
self.events.add(EventName.calibrationIncomplete)
|
||||
elif cal_status == log.LiveCalibrationData.Status.recalibrating:
|
||||
if not self.recalibrating_seen:
|
||||
set_offroad_alert("Offroad_Recalibration", True)
|
||||
self.recalibrating_seen = True
|
||||
self.events.add(EventName.calibrationRecalibrating)
|
||||
else:
|
||||
self.events.add(EventName.calibrationInvalid)
|
||||
|
||||
# Handle lane change
|
||||
if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange:
|
||||
direction = self.sm['lateralPlan'].laneChangeDirection
|
||||
if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \
|
||||
(CS.rightBlindspot and direction == LaneChangeDirection.right):
|
||||
self.events.add(EventName.laneChangeBlocked)
|
||||
else:
|
||||
if direction == LaneChangeDirection.left:
|
||||
self.events.add(EventName.preLaneChangeLeft)
|
||||
else:
|
||||
self.events.add(EventName.preLaneChangeRight)
|
||||
elif self.sm['lateralPlan'].laneChangeState in (LaneChangeState.laneChangeStarting,
|
||||
LaneChangeState.laneChangeFinishing):
|
||||
self.events.add(EventName.laneChange)
|
||||
|
||||
for i, pandaState in enumerate(self.sm['pandaStates']):
|
||||
# All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput
|
||||
if i < len(self.CP.safetyConfigs):
|
||||
safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or \
|
||||
pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam or \
|
||||
pandaState.alternativeExperience != self.CP.alternativeExperience
|
||||
else:
|
||||
safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES
|
||||
|
||||
if safety_mismatch or pandaState.safetyRxChecksInvalid or self.mismatch_counter >= 200:
|
||||
self.events.add(EventName.controlsMismatch)
|
||||
|
||||
if log.PandaState.FaultType.relayMalfunction in pandaState.faults:
|
||||
self.events.add(EventName.relayMalfunction)
|
||||
|
||||
# Handle HW and system malfunctions
|
||||
# Order is very intentional here. Be careful when modifying this.
|
||||
# All events here should at least have NO_ENTRY and SOFT_DISABLE.
|
||||
num_events = len(self.events)
|
||||
|
||||
not_running = {p.name for p in self.sm['managerState'].processes if not p.running and p.shouldBeRunning}
|
||||
if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES):
|
||||
self.events.add(EventName.processNotRunning)
|
||||
if not_running != self.not_running_prev:
|
||||
cloudlog.event("process_not_running", not_running=not_running, error=True)
|
||||
self.not_running_prev = not_running
|
||||
else:
|
||||
if not SIMULATION and not self.rk.lagging:
|
||||
if not self.sm.all_alive(self.camera_packets):
|
||||
self.events.add(EventName.cameraMalfunction)
|
||||
elif not self.sm.all_freq_ok(self.camera_packets):
|
||||
self.events.add(EventName.cameraFrameRate)
|
||||
if not REPLAY and self.rk.lagging:
|
||||
self.events.add(EventName.controlsdLagging)
|
||||
if len(self.sm['radarState'].radarErrors) or (not self.rk.lagging and not self.sm.all_checks(['radarState'])):
|
||||
self.events.add(EventName.radarFault)
|
||||
if not self.sm.valid['pandaStates']:
|
||||
self.events.add(EventName.usbError)
|
||||
if CS.canTimeout:
|
||||
self.events.add(EventName.canBusMissing)
|
||||
elif not CS.canValid:
|
||||
self.events.add(EventName.canError)
|
||||
|
||||
# generic catch-all. ideally, a more specific event should be added above instead
|
||||
can_rcv_timeout = self.can_rcv_timeout_counter >= 5
|
||||
has_disable_events = self.events.contains(ET.NO_ENTRY) and (self.events.contains(ET.SOFT_DISABLE) or self.events.contains(ET.IMMEDIATE_DISABLE))
|
||||
no_system_errors = (not has_disable_events) or (len(self.events) == num_events)
|
||||
if (not self.sm.all_checks() or can_rcv_timeout) and no_system_errors:
|
||||
if not self.sm.all_alive():
|
||||
self.events.add(EventName.commIssue)
|
||||
elif not self.sm.all_freq_ok():
|
||||
self.events.add(EventName.commIssueAvgFreq)
|
||||
else: # invalid or can_rcv_timeout.
|
||||
self.events.add(EventName.commIssue)
|
||||
|
||||
logs = {
|
||||
'invalid': [s for s, valid in self.sm.valid.items() if not valid],
|
||||
'not_alive': [s for s, alive in self.sm.alive.items() if not alive],
|
||||
'not_freq_ok': [s for s, freq_ok in self.sm.freq_ok.items() if not freq_ok],
|
||||
'can_rcv_timeout': can_rcv_timeout,
|
||||
}
|
||||
if logs != self.logged_comm_issue:
|
||||
cloudlog.event("commIssue", error=True, **logs)
|
||||
self.logged_comm_issue = logs
|
||||
else:
|
||||
self.logged_comm_issue = None
|
||||
|
||||
if not (self.CP.notCar and self.joystick_mode):
|
||||
if not self.sm['lateralPlan'].mpcSolutionValid:
|
||||
self.events.add(EventName.plannerError)
|
||||
if not self.sm['liveLocationKalman'].posenetOK:
|
||||
self.events.add(EventName.posenetInvalid)
|
||||
if not self.sm['liveLocationKalman'].deviceStable:
|
||||
self.events.add(EventName.deviceFalling)
|
||||
if not self.sm['liveLocationKalman'].inputsOK:
|
||||
self.events.add(EventName.locationdTemporaryError)
|
||||
if not self.sm['liveParameters'].valid and not TESTING_CLOSET and (not SIMULATION or REPLAY):
|
||||
self.events.add(EventName.paramsdTemporaryError)
|
||||
|
||||
# conservative HW alert. if the data or frequency are off, locationd will throw an error
|
||||
if any((self.sm.frame - self.sm.rcv_frame[s])*DT_CTRL > 10. for s in self.sensor_packets):
|
||||
self.events.add(EventName.sensorDataInvalid)
|
||||
|
||||
if not REPLAY:
|
||||
# Check for mismatch between openpilot and car's PCM
|
||||
cruise_mismatch = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise)
|
||||
self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0
|
||||
if self.cruise_mismatch_counter > int(6. / DT_CTRL):
|
||||
self.events.add(EventName.cruiseMismatch)
|
||||
|
||||
# Check for FCW
|
||||
stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.25
|
||||
model_fcw = self.sm['modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking
|
||||
planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled
|
||||
if planner_fcw or model_fcw:
|
||||
self.events.add(EventName.fcw)
|
||||
|
||||
for m in messaging.drain_sock(self.log_sock, wait_for_one=False):
|
||||
try:
|
||||
msg = m.androidLog.message
|
||||
if any(err in msg for err in ("ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED")):
|
||||
csid = msg.split("CSID:")[-1].split(" ")[0]
|
||||
evt = CSID_MAP.get(csid, None)
|
||||
if evt is not None:
|
||||
self.events.add(evt)
|
||||
except UnicodeDecodeError:
|
||||
pass
|
||||
|
||||
# TODO: fix simulator
|
||||
if not SIMULATION or REPLAY:
|
||||
if not self.sm['liveLocationKalman'].gpsOK and self.sm['liveLocationKalman'].inputsOK and (self.distance_traveled > 1000):
|
||||
# Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes
|
||||
self.events.add(EventName.noGps)
|
||||
|
||||
if self.sm['modelV2'].frameDropPerc > 20:
|
||||
self.events.add(EventName.modeldLagging)
|
||||
|
||||
def data_sample(self):
|
||||
"""Receive data from sockets and update carState"""
|
||||
|
||||
# Update carState from CAN
|
||||
can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
|
||||
CS = self.CI.update(self.CC, can_strs)
|
||||
if len(can_strs) and REPLAY:
|
||||
self.can_log_mono_time = messaging.log_from_bytes(can_strs[0]).logMonoTime
|
||||
|
||||
self.sm.update(0)
|
||||
|
||||
if not self.initialized:
|
||||
all_valid = CS.canValid and self.sm.all_checks()
|
||||
timed_out = self.sm.frame * DT_CTRL > (6. if REPLAY else 3.5)
|
||||
if all_valid or timed_out or (SIMULATION and not REPLAY):
|
||||
available_streams = VisionIpcClient.available_streams("camerad", block=False)
|
||||
if VisionStreamType.VISION_STREAM_ROAD not in available_streams:
|
||||
self.sm.ignore_alive.append('roadCameraState')
|
||||
if VisionStreamType.VISION_STREAM_WIDE_ROAD not in available_streams:
|
||||
self.sm.ignore_alive.append('wideRoadCameraState')
|
||||
|
||||
if not self.CP.passive:
|
||||
self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan'])
|
||||
|
||||
self.initialized = True
|
||||
self.set_initial_state()
|
||||
self.params.put_bool_nonblocking("ControlsReady", True)
|
||||
|
||||
# Check for CAN timeout
|
||||
if not can_strs:
|
||||
self.can_rcv_timeout_counter += 1
|
||||
self.can_rcv_cum_timeout_counter += 1
|
||||
else:
|
||||
self.can_rcv_timeout_counter = 0
|
||||
|
||||
# When the panda and controlsd do not agree on controls_allowed
|
||||
# we want to disengage openpilot. However the status from the panda goes through
|
||||
# another socket other than the CAN messages and one can arrive earlier than the other.
|
||||
# Therefore we allow a mismatch for two samples, then we trigger the disengagement.
|
||||
if not self.enabled:
|
||||
self.mismatch_counter = 0
|
||||
|
||||
# All pandas not in silent mode must have controlsAllowed when openpilot is enabled
|
||||
if self.enabled and any(not ps.controlsAllowed for ps in self.sm['pandaStates']
|
||||
if ps.safetyModel not in IGNORED_SAFETY_MODES):
|
||||
self.mismatch_counter += 1
|
||||
|
||||
self.distance_traveled += CS.vEgo * DT_CTRL
|
||||
|
||||
return CS
|
||||
|
||||
def state_transition(self, CS):
|
||||
"""Compute conditional state transitions and execute actions on state transitions"""
|
||||
|
||||
self.v_cruise_helper.update_v_cruise(CS, self.enabled, self.is_metric)
|
||||
|
||||
# decrement the soft disable timer at every step, as it's reset on
|
||||
# entrance in SOFT_DISABLING state
|
||||
self.soft_disable_timer = max(0, self.soft_disable_timer - 1)
|
||||
|
||||
self.current_alert_types = [ET.PERMANENT]
|
||||
|
||||
# ENABLED, SOFT DISABLING, PRE ENABLING, OVERRIDING
|
||||
if self.state != State.disabled:
|
||||
# user and immediate disable always have priority in a non-disabled state
|
||||
if self.events.contains(ET.USER_DISABLE):
|
||||
self.state = State.disabled
|
||||
self.current_alert_types.append(ET.USER_DISABLE)
|
||||
|
||||
elif self.events.contains(ET.IMMEDIATE_DISABLE):
|
||||
self.state = State.disabled
|
||||
self.current_alert_types.append(ET.IMMEDIATE_DISABLE)
|
||||
|
||||
else:
|
||||
# ENABLED
|
||||
if self.state == State.enabled:
|
||||
if self.events.contains(ET.SOFT_DISABLE):
|
||||
self.state = State.softDisabling
|
||||
self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL)
|
||||
self.current_alert_types.append(ET.SOFT_DISABLE)
|
||||
|
||||
elif self.events.contains(ET.OVERRIDE_LATERAL) or self.events.contains(ET.OVERRIDE_LONGITUDINAL):
|
||||
self.state = State.overriding
|
||||
self.current_alert_types += [ET.OVERRIDE_LATERAL, ET.OVERRIDE_LONGITUDINAL]
|
||||
|
||||
# SOFT DISABLING
|
||||
elif self.state == State.softDisabling:
|
||||
if not self.events.contains(ET.SOFT_DISABLE):
|
||||
# no more soft disabling condition, so go back to ENABLED
|
||||
self.state = State.enabled
|
||||
|
||||
elif self.soft_disable_timer > 0:
|
||||
self.current_alert_types.append(ET.SOFT_DISABLE)
|
||||
|
||||
elif self.soft_disable_timer <= 0:
|
||||
self.state = State.disabled
|
||||
|
||||
# PRE ENABLING
|
||||
elif self.state == State.preEnabled:
|
||||
if not self.events.contains(ET.PRE_ENABLE):
|
||||
self.state = State.enabled
|
||||
else:
|
||||
self.current_alert_types.append(ET.PRE_ENABLE)
|
||||
|
||||
# OVERRIDING
|
||||
elif self.state == State.overriding:
|
||||
if self.events.contains(ET.SOFT_DISABLE):
|
||||
self.state = State.softDisabling
|
||||
self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL)
|
||||
self.current_alert_types.append(ET.SOFT_DISABLE)
|
||||
elif not (self.events.contains(ET.OVERRIDE_LATERAL) or self.events.contains(ET.OVERRIDE_LONGITUDINAL)):
|
||||
self.state = State.enabled
|
||||
else:
|
||||
self.current_alert_types += [ET.OVERRIDE_LATERAL, ET.OVERRIDE_LONGITUDINAL]
|
||||
|
||||
# DISABLED
|
||||
elif self.state == State.disabled:
|
||||
if self.events.contains(ET.ENABLE):
|
||||
if self.events.contains(ET.NO_ENTRY):
|
||||
self.current_alert_types.append(ET.NO_ENTRY)
|
||||
|
||||
else:
|
||||
if self.events.contains(ET.PRE_ENABLE):
|
||||
self.state = State.preEnabled
|
||||
elif self.events.contains(ET.OVERRIDE_LATERAL) or self.events.contains(ET.OVERRIDE_LONGITUDINAL):
|
||||
self.state = State.overriding
|
||||
else:
|
||||
self.state = State.enabled
|
||||
self.current_alert_types.append(ET.ENABLE)
|
||||
self.v_cruise_helper.initialize_v_cruise(CS, self.experimental_mode)
|
||||
|
||||
# Check if openpilot is engaged and actuators are enabled
|
||||
self.enabled = self.state in ENABLED_STATES
|
||||
self.active = self.state in ACTIVE_STATES
|
||||
if self.active:
|
||||
self.current_alert_types.append(ET.WARNING)
|
||||
|
||||
def state_control(self, CS):
|
||||
"""Given the state, this function returns a CarControl packet"""
|
||||
|
||||
# Update VehicleModel
|
||||
lp = self.sm['liveParameters']
|
||||
x = max(lp.stiffnessFactor, 0.1)
|
||||
sr = max(lp.steerRatio, 0.1)
|
||||
self.VM.update_params(x, sr)
|
||||
|
||||
# Update Torque Params
|
||||
if self.CP.lateralTuning.which() == 'torque':
|
||||
torque_params = self.sm['liveTorqueParameters']
|
||||
if self.sm.all_checks(['liveTorqueParameters']) and torque_params.useParams:
|
||||
self.LaC.update_live_torque_params(torque_params.latAccelFactorFiltered, torque_params.latAccelOffsetFiltered,
|
||||
torque_params.frictionCoefficientFiltered)
|
||||
|
||||
lat_plan = self.sm['lateralPlan']
|
||||
long_plan = self.sm['longitudinalPlan']
|
||||
|
||||
CC = car.CarControl.new_message()
|
||||
CC.enabled = self.enabled
|
||||
|
||||
# Check which actuators can be enabled
|
||||
standstill = CS.vEgo <= max(self.CP.minSteerSpeed, MIN_LATERAL_CONTROL_SPEED) or CS.standstill
|
||||
CC.latActive = self.active and not CS.steerFaultTemporary and not CS.steerFaultPermanent and \
|
||||
(not standstill or self.joystick_mode)
|
||||
CC.longActive = self.enabled and not self.events.contains(ET.OVERRIDE_LONGITUDINAL) and self.CP.openpilotLongitudinalControl
|
||||
|
||||
actuators = CC.actuators
|
||||
actuators.longControlState = self.LoC.long_control_state
|
||||
|
||||
# Enable blinkers while lane changing
|
||||
if self.sm['lateralPlan'].laneChangeState != LaneChangeState.off:
|
||||
CC.leftBlinker = self.sm['lateralPlan'].laneChangeDirection == LaneChangeDirection.left
|
||||
CC.rightBlinker = self.sm['lateralPlan'].laneChangeDirection == LaneChangeDirection.right
|
||||
|
||||
if CS.leftBlinker or CS.rightBlinker:
|
||||
self.last_blinker_frame = self.sm.frame
|
||||
|
||||
# State specific actions
|
||||
|
||||
if not CC.latActive:
|
||||
self.LaC.reset()
|
||||
if not CC.longActive:
|
||||
self.LoC.reset(v_pid=CS.vEgo)
|
||||
|
||||
if not self.joystick_mode:
|
||||
# accel PID loop
|
||||
pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, self.v_cruise_helper.v_cruise_kph * CV.KPH_TO_MS)
|
||||
t_since_plan = (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) * DT_CTRL
|
||||
actuators.accel = self.LoC.update(CC.longActive, CS, long_plan, pid_accel_limits, t_since_plan)
|
||||
|
||||
# Steering PID loop and lateral MPC
|
||||
self.desired_curvature, self.desired_curvature_rate = get_lag_adjusted_curvature(self.CP, CS.vEgo,
|
||||
lat_plan.psis,
|
||||
lat_plan.curvatures,
|
||||
lat_plan.curvatureRates)
|
||||
actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp,
|
||||
self.steer_limited, self.desired_curvature,
|
||||
self.desired_curvature_rate, self.sm['liveLocationKalman'])
|
||||
actuators.curvature = self.desired_curvature
|
||||
else:
|
||||
lac_log = log.ControlsState.LateralDebugState.new_message()
|
||||
if self.sm.rcv_frame['testJoystick'] > 0:
|
||||
# reset joystick if it hasn't been received in a while
|
||||
should_reset_joystick = (self.sm.frame - self.sm.rcv_frame['testJoystick'])*DT_CTRL > 0.2
|
||||
if not should_reset_joystick:
|
||||
joystick_axes = self.sm['testJoystick'].axes
|
||||
else:
|
||||
joystick_axes = [0.0, 0.0]
|
||||
|
||||
if CC.longActive:
|
||||
actuators.accel = 4.0*clip(joystick_axes[0], -1, 1)
|
||||
|
||||
if CC.latActive:
|
||||
steer = clip(joystick_axes[1], -1, 1)
|
||||
# max angle is 45 for angle-based cars, max curvature is 0.02
|
||||
actuators.steer, actuators.steeringAngleDeg, actuators.curvature = steer, steer * 90., steer * -0.02
|
||||
|
||||
lac_log.active = self.active
|
||||
lac_log.steeringAngleDeg = CS.steeringAngleDeg
|
||||
lac_log.output = actuators.steer
|
||||
lac_log.saturated = abs(actuators.steer) >= 0.9
|
||||
|
||||
if CS.steeringPressed:
|
||||
self.last_steering_pressed_frame = self.sm.frame
|
||||
recent_steer_pressed = (self.sm.frame - self.last_steering_pressed_frame)*DT_CTRL < 2.0
|
||||
|
||||
# Send a "steering required alert" if saturation count has reached the limit
|
||||
if lac_log.active and not recent_steer_pressed and not self.CP.notCar:
|
||||
if self.CP.lateralTuning.which() == 'torque' and not self.joystick_mode:
|
||||
undershooting = abs(lac_log.desiredLateralAccel) / abs(1e-3 + lac_log.actualLateralAccel) > 1.2
|
||||
turning = abs(lac_log.desiredLateralAccel) > 1.0
|
||||
good_speed = CS.vEgo > 5
|
||||
max_torque = abs(self.last_actuators.steer) > 0.99
|
||||
if undershooting and turning and good_speed and max_torque:
|
||||
lac_log.active and self.events.add(EventName.steerSaturated)
|
||||
elif lac_log.saturated:
|
||||
dpath_points = lat_plan.dPathPoints
|
||||
if len(dpath_points):
|
||||
# Check if we deviated from the path
|
||||
# TODO use desired vs actual curvature
|
||||
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
|
||||
steering_value = actuators.steeringAngleDeg
|
||||
else:
|
||||
steering_value = actuators.steer
|
||||
|
||||
left_deviation = steering_value > 0 and dpath_points[0] < -0.20
|
||||
right_deviation = steering_value < 0 and dpath_points[0] > 0.20
|
||||
|
||||
if left_deviation or right_deviation:
|
||||
self.events.add(EventName.steerSaturated)
|
||||
|
||||
# Ensure no NaNs/Infs
|
||||
for p in ACTUATOR_FIELDS:
|
||||
attr = getattr(actuators, p)
|
||||
if not isinstance(attr, SupportsFloat):
|
||||
continue
|
||||
|
||||
if not math.isfinite(attr):
|
||||
cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}")
|
||||
setattr(actuators, p, 0.0)
|
||||
|
||||
return CC, lac_log
|
||||
|
||||
def publish_logs(self, CS, start_time, CC, lac_log):
|
||||
"""Send actuators and hud commands to the car, send controlsstate and MPC logging"""
|
||||
|
||||
# Orientation and angle rates can be useful for carcontroller
|
||||
# Only calibrated (car) frame is relevant for the carcontroller
|
||||
orientation_value = list(self.sm['liveLocationKalman'].calibratedOrientationNED.value)
|
||||
if len(orientation_value) > 2:
|
||||
CC.orientationNED = orientation_value
|
||||
angular_rate_value = list(self.sm['liveLocationKalman'].angularVelocityCalibrated.value)
|
||||
if len(angular_rate_value) > 2:
|
||||
CC.angularVelocity = angular_rate_value
|
||||
|
||||
CC.cruiseControl.override = self.enabled and not CC.longActive and self.CP.openpilotLongitudinalControl
|
||||
CC.cruiseControl.cancel = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise)
|
||||
if self.joystick_mode and self.sm.rcv_frame['testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]:
|
||||
CC.cruiseControl.cancel = True
|
||||
|
||||
speeds = self.sm['longitudinalPlan'].speeds
|
||||
if len(speeds):
|
||||
CC.cruiseControl.resume = self.enabled and CS.cruiseState.standstill and speeds[-1] > 0.1
|
||||
|
||||
hudControl = CC.hudControl
|
||||
hudControl.setSpeed = float(self.v_cruise_helper.v_cruise_cluster_kph * CV.KPH_TO_MS)
|
||||
hudControl.speedVisible = self.enabled
|
||||
hudControl.lanesVisible = self.enabled
|
||||
hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead
|
||||
|
||||
hudControl.rightLaneVisible = True
|
||||
hudControl.leftLaneVisible = True
|
||||
|
||||
recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown
|
||||
ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \
|
||||
and not CC.latActive and self.sm['liveCalibration'].calStatus == log.LiveCalibrationData.Status.calibrated
|
||||
|
||||
model_v2 = self.sm['modelV2']
|
||||
desire_prediction = model_v2.meta.desirePrediction
|
||||
if len(desire_prediction) and ldw_allowed:
|
||||
right_lane_visible = model_v2.laneLineProbs[2] > 0.5
|
||||
left_lane_visible = model_v2.laneLineProbs[1] > 0.5
|
||||
l_lane_change_prob = desire_prediction[Desire.laneChangeLeft]
|
||||
r_lane_change_prob = desire_prediction[Desire.laneChangeRight]
|
||||
|
||||
lane_lines = model_v2.laneLines
|
||||
l_lane_close = left_lane_visible and (lane_lines[1].y[0] > -(1.08 + CAMERA_OFFSET))
|
||||
r_lane_close = right_lane_visible and (lane_lines[2].y[0] < (1.08 - CAMERA_OFFSET))
|
||||
|
||||
hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
|
||||
hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)
|
||||
|
||||
if hudControl.rightLaneDepart or hudControl.leftLaneDepart:
|
||||
self.events.add(EventName.ldw)
|
||||
|
||||
clear_event_types = set()
|
||||
if ET.WARNING not in self.current_alert_types:
|
||||
clear_event_types.add(ET.WARNING)
|
||||
if self.enabled:
|
||||
clear_event_types.add(ET.NO_ENTRY)
|
||||
|
||||
alerts = self.events.create_alerts(self.current_alert_types, [self.CP, CS, self.sm, self.is_metric, self.soft_disable_timer])
|
||||
self.AM.add_many(self.sm.frame, alerts)
|
||||
current_alert = self.AM.process_alerts(self.sm.frame, clear_event_types)
|
||||
if current_alert:
|
||||
hudControl.visualAlert = current_alert.visual_alert
|
||||
|
||||
if not self.CP.passive and self.initialized:
|
||||
# send car controls over can
|
||||
now_nanos = self.can_log_mono_time if REPLAY else int(time.monotonic() * 1e9)
|
||||
self.last_actuators, can_sends = self.CI.apply(CC, now_nanos)
|
||||
self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid))
|
||||
CC.actuatorsOutput = self.last_actuators
|
||||
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
|
||||
self.steer_limited = abs(CC.actuators.steeringAngleDeg - CC.actuatorsOutput.steeringAngleDeg) > \
|
||||
STEER_ANGLE_SATURATION_THRESHOLD
|
||||
else:
|
||||
self.steer_limited = abs(CC.actuators.steer - CC.actuatorsOutput.steer) > 1e-2
|
||||
|
||||
force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \
|
||||
(self.state == State.softDisabling)
|
||||
|
||||
# Curvature & Steering angle
|
||||
lp = self.sm['liveParameters']
|
||||
|
||||
steer_angle_without_offset = math.radians(CS.steeringAngleDeg - lp.angleOffsetDeg)
|
||||
curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, lp.roll)
|
||||
|
||||
# controlsState
|
||||
dat = messaging.new_message('controlsState')
|
||||
dat.valid = CS.canValid
|
||||
controlsState = dat.controlsState
|
||||
if current_alert:
|
||||
controlsState.alertText1 = current_alert.alert_text_1
|
||||
controlsState.alertText2 = current_alert.alert_text_2
|
||||
controlsState.alertSize = current_alert.alert_size
|
||||
controlsState.alertStatus = current_alert.alert_status
|
||||
controlsState.alertBlinkingRate = current_alert.alert_rate
|
||||
controlsState.alertType = current_alert.alert_type
|
||||
controlsState.alertSound = current_alert.audible_alert
|
||||
|
||||
controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan']
|
||||
controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan']
|
||||
controlsState.enabled = self.enabled
|
||||
controlsState.active = self.active
|
||||
controlsState.curvature = curvature
|
||||
controlsState.desiredCurvature = self.desired_curvature
|
||||
controlsState.desiredCurvatureRate = self.desired_curvature_rate
|
||||
controlsState.state = self.state
|
||||
controlsState.engageable = not self.events.contains(ET.NO_ENTRY)
|
||||
controlsState.longControlState = self.LoC.long_control_state
|
||||
controlsState.vPid = float(self.LoC.v_pid)
|
||||
controlsState.vCruise = float(self.v_cruise_helper.v_cruise_kph)
|
||||
controlsState.vCruiseCluster = float(self.v_cruise_helper.v_cruise_cluster_kph)
|
||||
controlsState.upAccelCmd = float(self.LoC.pid.p)
|
||||
controlsState.uiAccelCmd = float(self.LoC.pid.i)
|
||||
controlsState.ufAccelCmd = float(self.LoC.pid.f)
|
||||
controlsState.cumLagMs = -self.rk.remaining * 1000.
|
||||
controlsState.startMonoTime = int(start_time * 1e9)
|
||||
controlsState.forceDecel = bool(force_decel)
|
||||
controlsState.canErrorCounter = self.can_rcv_cum_timeout_counter
|
||||
controlsState.experimentalMode = self.experimental_mode
|
||||
|
||||
lat_tuning = self.CP.lateralTuning.which()
|
||||
if self.joystick_mode:
|
||||
controlsState.lateralControlState.debugState = lac_log
|
||||
elif self.CP.steerControlType == car.CarParams.SteerControlType.angle:
|
||||
controlsState.lateralControlState.angleState = lac_log
|
||||
elif lat_tuning == 'pid':
|
||||
controlsState.lateralControlState.pidState = lac_log
|
||||
elif lat_tuning == 'torque':
|
||||
controlsState.lateralControlState.torqueState = lac_log
|
||||
|
||||
self.pm.send('controlsState', dat)
|
||||
|
||||
# carState
|
||||
car_events = self.events.to_msg()
|
||||
cs_send = messaging.new_message('carState')
|
||||
cs_send.valid = CS.canValid
|
||||
cs_send.carState = CS
|
||||
cs_send.carState.events = car_events
|
||||
self.pm.send('carState', cs_send)
|
||||
|
||||
# onroadEvents - logged every second or on change
|
||||
if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev):
|
||||
ce_send = messaging.new_message('onroadEvents', len(self.events))
|
||||
ce_send.valid = True
|
||||
ce_send.onroadEvents = car_events
|
||||
self.pm.send('onroadEvents', ce_send)
|
||||
self.events_prev = self.events.names.copy()
|
||||
|
||||
# carParams - logged every 50 seconds (> 1 per segment)
|
||||
if (self.sm.frame % int(50. / DT_CTRL) == 0):
|
||||
cp_send = messaging.new_message('carParams')
|
||||
cp_send.valid = True
|
||||
cp_send.carParams = self.CP
|
||||
self.pm.send('carParams', cp_send)
|
||||
|
||||
# carControl
|
||||
cc_send = messaging.new_message('carControl')
|
||||
cc_send.valid = CS.canValid
|
||||
cc_send.carControl = CC
|
||||
self.pm.send('carControl', cc_send)
|
||||
|
||||
# copy CarControl to pass to CarInterface on the next iteration
|
||||
self.CC = CC
|
||||
|
||||
def step(self):
|
||||
start_time = time.monotonic()
|
||||
|
||||
# Sample data from sockets and get a carState
|
||||
CS = self.data_sample()
|
||||
cloudlog.timestamp("Data sampled")
|
||||
|
||||
self.update_events(CS)
|
||||
cloudlog.timestamp("Events updated")
|
||||
|
||||
if not self.CP.passive and self.initialized:
|
||||
# Update control state
|
||||
self.state_transition(CS)
|
||||
|
||||
# Compute actuators (runs PID loops and lateral MPC)
|
||||
CC, lac_log = self.state_control(CS)
|
||||
|
||||
# Publish data
|
||||
self.publish_logs(CS, start_time, CC, lac_log)
|
||||
|
||||
self.CS_prev = CS
|
||||
|
||||
def params_thread(self, evt):
|
||||
while not evt.is_set():
|
||||
self.is_metric = self.params.get_bool("IsMetric")
|
||||
self.experimental_mode = self.params.get_bool("ExperimentalMode") and self.CP.openpilotLongitudinalControl
|
||||
if self.CP.notCar:
|
||||
self.joystick_mode = self.params.get_bool("JoystickDebugMode")
|
||||
time.sleep(0.1)
|
||||
|
||||
def controlsd_thread(self):
|
||||
e = threading.Event()
|
||||
t = threading.Thread(target=self.params_thread, args=(e, ))
|
||||
try:
|
||||
t.start()
|
||||
while True:
|
||||
self.step()
|
||||
self.rk.monitor_time()
|
||||
except SystemExit:
|
||||
e.set()
|
||||
t.join()
|
||||
|
||||
|
||||
def main():
|
||||
controls = Controls()
|
||||
controls.controlsd_thread()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
0
selfdrive/controls/lib/__init__.py
Normal file
0
selfdrive/controls/lib/__init__.py
Normal file
62
selfdrive/controls/lib/alertmanager.py
Normal file
62
selfdrive/controls/lib/alertmanager.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import copy
|
||||
import os
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Optional
|
||||
|
||||
from openpilot.common.basedir import BASEDIR
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.selfdrive.controls.lib.events import Alert
|
||||
|
||||
|
||||
with open(os.path.join(BASEDIR, "selfdrive/controls/lib/alerts_offroad.json")) as f:
|
||||
OFFROAD_ALERTS = json.load(f)
|
||||
|
||||
|
||||
def set_offroad_alert(alert: str, show_alert: bool, extra_text: Optional[str] = None) -> None:
|
||||
if show_alert:
|
||||
a = copy.copy(OFFROAD_ALERTS[alert])
|
||||
a['extra'] = extra_text or ''
|
||||
Params().put(alert, json.dumps(a))
|
||||
else:
|
||||
Params().remove(alert)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AlertEntry:
|
||||
alert: Optional[Alert] = None
|
||||
start_frame: int = -1
|
||||
end_frame: int = -1
|
||||
|
||||
def active(self, frame: int) -> bool:
|
||||
return frame <= self.end_frame
|
||||
|
||||
class AlertManager:
|
||||
def __init__(self):
|
||||
self.alerts: Dict[str, AlertEntry] = defaultdict(AlertEntry)
|
||||
|
||||
def add_many(self, frame: int, alerts: List[Alert]) -> None:
|
||||
for alert in alerts:
|
||||
entry = self.alerts[alert.alert_type]
|
||||
entry.alert = alert
|
||||
if not entry.active(frame):
|
||||
entry.start_frame = frame
|
||||
min_end_frame = entry.start_frame + alert.duration
|
||||
entry.end_frame = max(frame + 1, min_end_frame)
|
||||
|
||||
def process_alerts(self, frame: int, clear_event_types: set) -> Optional[Alert]:
|
||||
current_alert = AlertEntry()
|
||||
for v in self.alerts.values():
|
||||
if not v.alert:
|
||||
continue
|
||||
|
||||
if v.alert.event_type in clear_event_types:
|
||||
v.end_frame = -1
|
||||
|
||||
# sort by priority first and then by start_frame
|
||||
greater = current_alert.alert is None or (v.alert.priority, v.start_frame) > (current_alert.alert.priority, current_alert.start_frame)
|
||||
if v.active(frame) and greater:
|
||||
current_alert = v
|
||||
|
||||
return current_alert.alert
|
||||
56
selfdrive/controls/lib/alerts_offroad.json
Normal file
56
selfdrive/controls/lib/alerts_offroad.json
Normal file
@@ -0,0 +1,56 @@
|
||||
{
|
||||
"Offroad_TemperatureTooHigh": {
|
||||
"text": "Device temperature too high. System cooling down before starting. Current internal component temperature: %1",
|
||||
"severity": 1
|
||||
},
|
||||
"Offroad_ConnectivityNeededPrompt": {
|
||||
"text": "Immediately connect to the internet to check for updates. If you do not connect to the internet, openpilot won't engage in %1",
|
||||
"severity": 0,
|
||||
"_comment": "Set extra field to number of days"
|
||||
},
|
||||
"Offroad_ConnectivityNeeded": {
|
||||
"text": "Connect to internet to check for updates. openpilot won't automatically start until it connects to internet to check for updates.",
|
||||
"severity": 1
|
||||
},
|
||||
"Offroad_UpdateFailed": {
|
||||
"text": "Unable to download updates\n%1",
|
||||
"severity": 1,
|
||||
"_comment": "Set extra field to the failed reason."
|
||||
},
|
||||
"Offroad_InvalidTime": {
|
||||
"text": "Invalid date and time settings, system won't start. Connect to internet to set time.",
|
||||
"severity": 1
|
||||
},
|
||||
"Offroad_IsTakingSnapshot": {
|
||||
"text": "Taking camera snapshots. System won't start until finished.",
|
||||
"severity": 0
|
||||
},
|
||||
"Offroad_NeosUpdate": {
|
||||
"text": "An update to your device's operating system is downloading in the background. You will be prompted to update when it's ready to install.",
|
||||
"severity": 0
|
||||
},
|
||||
"Offroad_UnofficialHardware": {
|
||||
"text": "Device failed to register. It will not connect to or upload to comma.ai servers, and receives no support from comma.ai. If this is an official device, visit https://comma.ai/support.",
|
||||
"severity": 1
|
||||
},
|
||||
"Offroad_StorageMissing": {
|
||||
"text": "NVMe drive not mounted.",
|
||||
"severity": 1
|
||||
},
|
||||
"Offroad_BadNvme": {
|
||||
"text": "Unsupported NVMe drive detected. Device may draw significantly more power and overheat due to the unsupported NVMe.",
|
||||
"severity": 1
|
||||
},
|
||||
"Offroad_CarUnrecognized": {
|
||||
"text": "openpilot was unable to identify your car. Your car is either unsupported or its ECUs are not recognized. Please submit a pull request to add the firmware versions to the proper vehicle. Need help? Join discord.comma.ai.",
|
||||
"severity": 0
|
||||
},
|
||||
"Offroad_NoFirmware": {
|
||||
"text": "openpilot was unable to identify your car. Check integrity of cables and ensure all connections are secure, particularly that the comma power is fully inserted in the OBD-II port of the vehicle. Need help? Join discord.comma.ai.",
|
||||
"severity": 0
|
||||
},
|
||||
"Offroad_Recalibration": {
|
||||
"text": "openpilot detected a change in the device's mounting position. Ensure the device is fully seated in the mount and the mount is firmly secured to the windshield.",
|
||||
"severity": 0
|
||||
}
|
||||
}
|
||||
114
selfdrive/controls/lib/desire_helper.py
Normal file
114
selfdrive/controls/lib/desire_helper.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from cereal import log
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.realtime import DT_MDL
|
||||
|
||||
LaneChangeState = log.LateralPlan.LaneChangeState
|
||||
LaneChangeDirection = log.LateralPlan.LaneChangeDirection
|
||||
|
||||
LANE_CHANGE_SPEED_MIN = 20 * CV.MPH_TO_MS
|
||||
LANE_CHANGE_TIME_MAX = 10.
|
||||
|
||||
DESIRES = {
|
||||
LaneChangeDirection.none: {
|
||||
LaneChangeState.off: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.none,
|
||||
},
|
||||
LaneChangeDirection.left: {
|
||||
LaneChangeState.off: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeLeft,
|
||||
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeLeft,
|
||||
},
|
||||
LaneChangeDirection.right: {
|
||||
LaneChangeState.off: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
||||
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeRight,
|
||||
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeRight,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class DesireHelper:
|
||||
def __init__(self):
|
||||
self.lane_change_state = LaneChangeState.off
|
||||
self.lane_change_direction = LaneChangeDirection.none
|
||||
self.lane_change_timer = 0.0
|
||||
self.lane_change_ll_prob = 1.0
|
||||
self.keep_pulse_timer = 0.0
|
||||
self.prev_one_blinker = False
|
||||
self.desire = log.LateralPlan.Desire.none
|
||||
|
||||
def update(self, carstate, lateral_active, lane_change_prob):
|
||||
v_ego = carstate.vEgo
|
||||
one_blinker = carstate.leftBlinker != carstate.rightBlinker
|
||||
below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN
|
||||
|
||||
if not lateral_active or self.lane_change_timer > LANE_CHANGE_TIME_MAX:
|
||||
self.lane_change_state = LaneChangeState.off
|
||||
self.lane_change_direction = LaneChangeDirection.none
|
||||
else:
|
||||
# LaneChangeState.off
|
||||
if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
|
||||
self.lane_change_state = LaneChangeState.preLaneChange
|
||||
self.lane_change_ll_prob = 1.0
|
||||
|
||||
# LaneChangeState.preLaneChange
|
||||
elif self.lane_change_state == LaneChangeState.preLaneChange:
|
||||
# Set lane change direction
|
||||
self.lane_change_direction = LaneChangeDirection.left if \
|
||||
carstate.leftBlinker else LaneChangeDirection.right
|
||||
|
||||
torque_applied = carstate.steeringPressed and \
|
||||
((carstate.steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or
|
||||
(carstate.steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))
|
||||
|
||||
blindspot_detected = ((carstate.leftBlindspot and self.lane_change_direction == LaneChangeDirection.left) or
|
||||
(carstate.rightBlindspot and self.lane_change_direction == LaneChangeDirection.right))
|
||||
|
||||
if not one_blinker or below_lane_change_speed:
|
||||
self.lane_change_state = LaneChangeState.off
|
||||
self.lane_change_direction = LaneChangeDirection.none
|
||||
elif torque_applied and not blindspot_detected:
|
||||
self.lane_change_state = LaneChangeState.laneChangeStarting
|
||||
|
||||
# LaneChangeState.laneChangeStarting
|
||||
elif self.lane_change_state == LaneChangeState.laneChangeStarting:
|
||||
# fade out over .5s
|
||||
self.lane_change_ll_prob = max(self.lane_change_ll_prob - 2 * DT_MDL, 0.0)
|
||||
|
||||
# 98% certainty
|
||||
if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
|
||||
self.lane_change_state = LaneChangeState.laneChangeFinishing
|
||||
|
||||
# LaneChangeState.laneChangeFinishing
|
||||
elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
|
||||
# fade in laneline over 1s
|
||||
self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0)
|
||||
|
||||
if self.lane_change_ll_prob > 0.99:
|
||||
self.lane_change_direction = LaneChangeDirection.none
|
||||
if one_blinker:
|
||||
self.lane_change_state = LaneChangeState.preLaneChange
|
||||
else:
|
||||
self.lane_change_state = LaneChangeState.off
|
||||
|
||||
if self.lane_change_state in (LaneChangeState.off, LaneChangeState.preLaneChange):
|
||||
self.lane_change_timer = 0.0
|
||||
else:
|
||||
self.lane_change_timer += DT_MDL
|
||||
|
||||
self.prev_one_blinker = one_blinker
|
||||
|
||||
self.desire = DESIRES[self.lane_change_direction][self.lane_change_state]
|
||||
|
||||
# Send keep pulse once per second during LaneChangeStart.preLaneChange
|
||||
if self.lane_change_state in (LaneChangeState.off, LaneChangeState.laneChangeStarting):
|
||||
self.keep_pulse_timer = 0.0
|
||||
elif self.lane_change_state == LaneChangeState.preLaneChange:
|
||||
self.keep_pulse_timer += DT_MDL
|
||||
if self.keep_pulse_timer > 1.0:
|
||||
self.keep_pulse_timer = 0.0
|
||||
elif self.desire in (log.LateralPlan.Desire.keepLeft, log.LateralPlan.Desire.keepRight):
|
||||
self.desire = log.LateralPlan.Desire.none
|
||||
213
selfdrive/controls/lib/drive_helpers.py
Normal file
213
selfdrive/controls/lib/drive_helpers.py
Normal file
@@ -0,0 +1,213 @@
|
||||
import math
|
||||
|
||||
from cereal import car, log
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.numpy_fast import clip, interp
|
||||
from openpilot.common.realtime import DT_MDL
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
|
||||
# WARNING: this value was determined based on the model's training distribution,
|
||||
# model predictions above this speed can be unpredictable
|
||||
# V_CRUISE's are in kph
|
||||
V_CRUISE_MIN = 8
|
||||
V_CRUISE_MAX = 145
|
||||
V_CRUISE_UNSET = 255
|
||||
V_CRUISE_INITIAL = 40
|
||||
V_CRUISE_INITIAL_EXPERIMENTAL_MODE = 105
|
||||
IMPERIAL_INCREMENT = 1.6 # should be CV.MPH_TO_KPH, but this causes rounding errors
|
||||
|
||||
MIN_SPEED = 1.0
|
||||
CONTROL_N = 17
|
||||
CAR_ROTATION_RADIUS = 0.0
|
||||
|
||||
# EU guidelines
|
||||
MAX_LATERAL_JERK = 5.0
|
||||
|
||||
MAX_VEL_ERR = 5.0
|
||||
|
||||
ButtonEvent = car.CarState.ButtonEvent
|
||||
ButtonType = car.CarState.ButtonEvent.Type
|
||||
CRUISE_LONG_PRESS = 50
|
||||
CRUISE_NEAREST_FUNC = {
|
||||
ButtonType.accelCruise: math.ceil,
|
||||
ButtonType.decelCruise: math.floor,
|
||||
}
|
||||
CRUISE_INTERVAL_SIGN = {
|
||||
ButtonType.accelCruise: +1,
|
||||
ButtonType.decelCruise: -1,
|
||||
}
|
||||
|
||||
|
||||
class VCruiseHelper:
|
||||
def __init__(self, CP):
|
||||
self.CP = CP
|
||||
self.v_cruise_kph = V_CRUISE_UNSET
|
||||
self.v_cruise_cluster_kph = V_CRUISE_UNSET
|
||||
self.v_cruise_kph_last = 0
|
||||
self.button_timers = {ButtonType.decelCruise: 0, ButtonType.accelCruise: 0}
|
||||
self.button_change_states = {btn: {"standstill": False, "enabled": False} for btn in self.button_timers}
|
||||
|
||||
@property
|
||||
def v_cruise_initialized(self):
|
||||
return self.v_cruise_kph != V_CRUISE_UNSET
|
||||
|
||||
def update_v_cruise(self, CS, enabled, is_metric):
|
||||
self.v_cruise_kph_last = self.v_cruise_kph
|
||||
|
||||
if CS.cruiseState.available:
|
||||
if not self.CP.pcmCruise:
|
||||
# if stock cruise is completely disabled, then we can use our own set speed logic
|
||||
self._update_v_cruise_non_pcm(CS, enabled, is_metric)
|
||||
self.v_cruise_cluster_kph = self.v_cruise_kph
|
||||
self.update_button_timers(CS, enabled)
|
||||
else:
|
||||
self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH
|
||||
self.v_cruise_cluster_kph = CS.cruiseState.speedCluster * CV.MS_TO_KPH
|
||||
else:
|
||||
self.v_cruise_kph = V_CRUISE_UNSET
|
||||
self.v_cruise_cluster_kph = V_CRUISE_UNSET
|
||||
|
||||
def _update_v_cruise_non_pcm(self, CS, enabled, is_metric):
|
||||
# handle button presses. TODO: this should be in state_control, but a decelCruise press
|
||||
# would have the effect of both enabling and changing speed is checked after the state transition
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
long_press = False
|
||||
button_type = None
|
||||
|
||||
v_cruise_delta = 1. if is_metric else IMPERIAL_INCREMENT
|
||||
|
||||
for b in CS.buttonEvents:
|
||||
if b.type.raw in self.button_timers and not b.pressed:
|
||||
if self.button_timers[b.type.raw] > CRUISE_LONG_PRESS:
|
||||
return # end long press
|
||||
button_type = b.type.raw
|
||||
break
|
||||
else:
|
||||
for k in self.button_timers.keys():
|
||||
if self.button_timers[k] and self.button_timers[k] % CRUISE_LONG_PRESS == 0:
|
||||
button_type = k
|
||||
long_press = True
|
||||
break
|
||||
|
||||
if button_type is None:
|
||||
return
|
||||
|
||||
# Don't adjust speed when pressing resume to exit standstill
|
||||
cruise_standstill = self.button_change_states[button_type]["standstill"] or CS.cruiseState.standstill
|
||||
if button_type == ButtonType.accelCruise and cruise_standstill:
|
||||
return
|
||||
|
||||
# Don't adjust speed if we've enabled since the button was depressed (some ports enable on rising edge)
|
||||
if not self.button_change_states[button_type]["enabled"]:
|
||||
return
|
||||
|
||||
v_cruise_delta = v_cruise_delta * (5 if long_press else 1)
|
||||
if long_press and self.v_cruise_kph % v_cruise_delta != 0: # partial interval
|
||||
self.v_cruise_kph = CRUISE_NEAREST_FUNC[button_type](self.v_cruise_kph / v_cruise_delta) * v_cruise_delta
|
||||
else:
|
||||
self.v_cruise_kph += v_cruise_delta * CRUISE_INTERVAL_SIGN[button_type]
|
||||
|
||||
# If set is pressed while overriding, clip cruise speed to minimum of vEgo
|
||||
if CS.gasPressed and button_type in (ButtonType.decelCruise, ButtonType.setCruise):
|
||||
self.v_cruise_kph = max(self.v_cruise_kph, CS.vEgo * CV.MS_TO_KPH)
|
||||
|
||||
self.v_cruise_kph = clip(round(self.v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX)
|
||||
|
||||
def update_button_timers(self, CS, enabled):
|
||||
# increment timer for buttons still pressed
|
||||
for k in self.button_timers:
|
||||
if self.button_timers[k] > 0:
|
||||
self.button_timers[k] += 1
|
||||
|
||||
for b in CS.buttonEvents:
|
||||
if b.type.raw in self.button_timers:
|
||||
# Start/end timer and store current state on change of button pressed
|
||||
self.button_timers[b.type.raw] = 1 if b.pressed else 0
|
||||
self.button_change_states[b.type.raw] = {"standstill": CS.cruiseState.standstill, "enabled": enabled}
|
||||
|
||||
def initialize_v_cruise(self, CS, experimental_mode: bool) -> None:
|
||||
# initializing is handled by the PCM
|
||||
if self.CP.pcmCruise:
|
||||
return
|
||||
|
||||
initial = V_CRUISE_INITIAL_EXPERIMENTAL_MODE if experimental_mode else V_CRUISE_INITIAL
|
||||
|
||||
# 250kph or above probably means we never had a set speed
|
||||
if any(b.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for b in CS.buttonEvents) and self.v_cruise_kph_last < 250:
|
||||
self.v_cruise_kph = self.v_cruise_kph_last
|
||||
else:
|
||||
self.v_cruise_kph = int(round(clip(CS.vEgo * CV.MS_TO_KPH, initial, V_CRUISE_MAX)))
|
||||
|
||||
self.v_cruise_cluster_kph = self.v_cruise_kph
|
||||
|
||||
|
||||
def apply_deadzone(error, deadzone):
|
||||
if error > deadzone:
|
||||
error -= deadzone
|
||||
elif error < - deadzone:
|
||||
error += deadzone
|
||||
else:
|
||||
error = 0.
|
||||
return error
|
||||
|
||||
|
||||
def apply_center_deadzone(error, deadzone):
|
||||
if (error > - deadzone) and (error < deadzone):
|
||||
error = 0.
|
||||
return error
|
||||
|
||||
|
||||
def rate_limit(new_value, last_value, dw_step, up_step):
|
||||
return clip(new_value, last_value + dw_step, last_value + up_step)
|
||||
|
||||
|
||||
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
|
||||
if len(psis) != CONTROL_N:
|
||||
psis = [0.0]*CONTROL_N
|
||||
curvatures = [0.0]*CONTROL_N
|
||||
curvature_rates = [0.0]*CONTROL_N
|
||||
v_ego = max(MIN_SPEED, v_ego)
|
||||
|
||||
# TODO this needs more thought, use .2s extra for now to estimate other delays
|
||||
delay = CP.steerActuatorDelay + .2
|
||||
|
||||
# MPC can plan to turn the wheel and turn back before t_delay. This means
|
||||
# in high delay cases some corrections never even get commanded. So just use
|
||||
# psi to calculate a simple linearization of desired curvature
|
||||
current_curvature_desired = curvatures[0]
|
||||
psi = interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
|
||||
average_curvature_desired = psi / (v_ego * delay)
|
||||
desired_curvature = 2 * average_curvature_desired - current_curvature_desired
|
||||
|
||||
# This is the "desired rate of the setpoint" not an actual desired rate
|
||||
desired_curvature_rate = curvature_rates[0]
|
||||
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
|
||||
safe_desired_curvature_rate = clip(desired_curvature_rate,
|
||||
-max_curvature_rate,
|
||||
max_curvature_rate)
|
||||
safe_desired_curvature = clip(desired_curvature,
|
||||
current_curvature_desired - max_curvature_rate * DT_MDL,
|
||||
current_curvature_desired + max_curvature_rate * DT_MDL)
|
||||
|
||||
return safe_desired_curvature, safe_desired_curvature_rate
|
||||
|
||||
|
||||
def get_friction(lateral_accel_error: float, lateral_accel_deadzone: float, friction_threshold: float,
|
||||
torque_params: car.CarParams.LateralTorqueTuning, friction_compensation: bool) -> float:
|
||||
friction_interp = interp(
|
||||
apply_center_deadzone(lateral_accel_error, lateral_accel_deadzone),
|
||||
[-friction_threshold, friction_threshold],
|
||||
[-torque_params.friction, torque_params.friction]
|
||||
)
|
||||
friction = float(friction_interp) if friction_compensation else 0.0
|
||||
return friction
|
||||
|
||||
|
||||
def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float:
|
||||
# ToDo: Try relative error, and absolute speed
|
||||
if len(modelV2.temporalPose.trans):
|
||||
vel_err = clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
|
||||
return float(vel_err)
|
||||
return 0.0
|
||||
996
selfdrive/controls/lib/events.py
Executable file
996
selfdrive/controls/lib/events.py
Executable file
@@ -0,0 +1,996 @@
|
||||
#!/usr/bin/env python3
|
||||
import math
|
||||
import os
|
||||
from enum import IntEnum
|
||||
from typing import Dict, Union, Callable, List, Optional
|
||||
|
||||
from cereal import log, car
|
||||
import cereal.messaging as messaging
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.realtime import DT_CTRL
|
||||
from openpilot.selfdrive.locationd.calibrationd import MIN_SPEED_FILTER
|
||||
from openpilot.system.version import get_short_branch
|
||||
|
||||
AlertSize = log.ControlsState.AlertSize
|
||||
AlertStatus = log.ControlsState.AlertStatus
|
||||
VisualAlert = car.CarControl.HUDControl.VisualAlert
|
||||
AudibleAlert = car.CarControl.HUDControl.AudibleAlert
|
||||
EventName = car.CarEvent.EventName
|
||||
|
||||
|
||||
# Alert priorities
|
||||
class Priority(IntEnum):
|
||||
LOWEST = 0
|
||||
LOWER = 1
|
||||
LOW = 2
|
||||
MID = 3
|
||||
HIGH = 4
|
||||
HIGHEST = 5
|
||||
|
||||
|
||||
# Event types
|
||||
class ET:
|
||||
ENABLE = 'enable'
|
||||
PRE_ENABLE = 'preEnable'
|
||||
OVERRIDE_LATERAL = 'overrideLateral'
|
||||
OVERRIDE_LONGITUDINAL = 'overrideLongitudinal'
|
||||
NO_ENTRY = 'noEntry'
|
||||
WARNING = 'warning'
|
||||
USER_DISABLE = 'userDisable'
|
||||
SOFT_DISABLE = 'softDisable'
|
||||
IMMEDIATE_DISABLE = 'immediateDisable'
|
||||
PERMANENT = 'permanent'
|
||||
|
||||
|
||||
# get event name from enum
|
||||
EVENT_NAME = {v: k for k, v in EventName.schema.enumerants.items()}
|
||||
|
||||
|
||||
class Events:
|
||||
def __init__(self):
|
||||
self.events: List[int] = []
|
||||
self.static_events: List[int] = []
|
||||
self.events_prev = dict.fromkeys(EVENTS.keys(), 0)
|
||||
|
||||
@property
|
||||
def names(self) -> List[int]:
|
||||
return self.events
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.events)
|
||||
|
||||
def add(self, event_name: int, static: bool=False) -> None:
|
||||
if static:
|
||||
self.static_events.append(event_name)
|
||||
self.events.append(event_name)
|
||||
|
||||
def clear(self) -> None:
|
||||
self.events_prev = {k: (v + 1 if k in self.events else 0) for k, v in self.events_prev.items()}
|
||||
self.events = self.static_events.copy()
|
||||
|
||||
def contains(self, event_type: str) -> bool:
|
||||
return any(event_type in EVENTS.get(e, {}) for e in self.events)
|
||||
|
||||
def create_alerts(self, event_types: List[str], callback_args=None):
|
||||
if callback_args is None:
|
||||
callback_args = []
|
||||
|
||||
ret = []
|
||||
for e in self.events:
|
||||
types = EVENTS[e].keys()
|
||||
for et in event_types:
|
||||
if et in types:
|
||||
alert = EVENTS[e][et]
|
||||
if not isinstance(alert, Alert):
|
||||
alert = alert(*callback_args)
|
||||
|
||||
if DT_CTRL * (self.events_prev[e] + 1) >= alert.creation_delay:
|
||||
alert.alert_type = f"{EVENT_NAME[e]}/{et}"
|
||||
alert.event_type = et
|
||||
ret.append(alert)
|
||||
return ret
|
||||
|
||||
def add_from_msg(self, events):
|
||||
for e in events:
|
||||
self.events.append(e.name.raw)
|
||||
|
||||
def to_msg(self):
|
||||
ret = []
|
||||
for event_name in self.events:
|
||||
event = car.CarEvent.new_message()
|
||||
event.name = event_name
|
||||
for event_type in EVENTS.get(event_name, {}):
|
||||
setattr(event, event_type, True)
|
||||
ret.append(event)
|
||||
return ret
|
||||
|
||||
|
||||
class Alert:
|
||||
def __init__(self,
|
||||
alert_text_1: str,
|
||||
alert_text_2: str,
|
||||
alert_status: log.ControlsState.AlertStatus,
|
||||
alert_size: log.ControlsState.AlertSize,
|
||||
priority: Priority,
|
||||
visual_alert: car.CarControl.HUDControl.VisualAlert,
|
||||
audible_alert: car.CarControl.HUDControl.AudibleAlert,
|
||||
duration: float,
|
||||
alert_rate: float = 0.,
|
||||
creation_delay: float = 0.):
|
||||
|
||||
self.alert_text_1 = alert_text_1
|
||||
self.alert_text_2 = alert_text_2
|
||||
self.alert_status = alert_status
|
||||
self.alert_size = alert_size
|
||||
self.priority = priority
|
||||
self.visual_alert = visual_alert
|
||||
self.audible_alert = audible_alert
|
||||
|
||||
self.duration = int(duration / DT_CTRL)
|
||||
|
||||
self.alert_rate = alert_rate
|
||||
self.creation_delay = creation_delay
|
||||
|
||||
self.alert_type = ""
|
||||
self.event_type: Optional[str] = None
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.alert_text_1}/{self.alert_text_2} {self.priority} {self.visual_alert} {self.audible_alert}"
|
||||
|
||||
def __gt__(self, alert2) -> bool:
|
||||
if not isinstance(alert2, Alert):
|
||||
return False
|
||||
return self.priority > alert2.priority
|
||||
|
||||
|
||||
class NoEntryAlert(Alert):
|
||||
def __init__(self, alert_text_2: str,
|
||||
alert_text_1: str = "openpilot Unavailable",
|
||||
visual_alert: car.CarControl.HUDControl.VisualAlert=VisualAlert.none):
|
||||
super().__init__(alert_text_1, alert_text_2, AlertStatus.normal,
|
||||
AlertSize.mid, Priority.LOW, visual_alert,
|
||||
AudibleAlert.refuse, 3.)
|
||||
|
||||
|
||||
class SoftDisableAlert(Alert):
|
||||
def __init__(self, alert_text_2: str):
|
||||
super().__init__("TAKE CONTROL IMMEDIATELY", alert_text_2,
|
||||
AlertStatus.userPrompt, AlertSize.full,
|
||||
Priority.MID, VisualAlert.steerRequired,
|
||||
AudibleAlert.warningSoft, 2.),
|
||||
|
||||
|
||||
# less harsh version of SoftDisable, where the condition is user-triggered
|
||||
class UserSoftDisableAlert(SoftDisableAlert):
|
||||
def __init__(self, alert_text_2: str):
|
||||
super().__init__(alert_text_2),
|
||||
self.alert_text_1 = "openpilot will disengage"
|
||||
|
||||
|
||||
class ImmediateDisableAlert(Alert):
|
||||
def __init__(self, alert_text_2: str):
|
||||
super().__init__("TAKE CONTROL IMMEDIATELY", alert_text_2,
|
||||
AlertStatus.critical, AlertSize.full,
|
||||
Priority.HIGHEST, VisualAlert.steerRequired,
|
||||
AudibleAlert.warningImmediate, 4.),
|
||||
|
||||
|
||||
class EngagementAlert(Alert):
|
||||
def __init__(self, audible_alert: car.CarControl.HUDControl.AudibleAlert):
|
||||
super().__init__("", "",
|
||||
AlertStatus.normal, AlertSize.none,
|
||||
Priority.MID, VisualAlert.none,
|
||||
audible_alert, .2),
|
||||
|
||||
|
||||
class NormalPermanentAlert(Alert):
|
||||
def __init__(self, alert_text_1: str, alert_text_2: str = "", duration: float = 0.2, priority: Priority = Priority.LOWER, creation_delay: float = 0.):
|
||||
super().__init__(alert_text_1, alert_text_2,
|
||||
AlertStatus.normal, AlertSize.mid if len(alert_text_2) else AlertSize.small,
|
||||
priority, VisualAlert.none, AudibleAlert.none, duration, creation_delay=creation_delay),
|
||||
|
||||
|
||||
class StartupAlert(Alert):
|
||||
def __init__(self, alert_text_1: str, alert_text_2: str = "Always keep hands on wheel and eyes on road", alert_status=AlertStatus.normal):
|
||||
super().__init__(alert_text_1, alert_text_2,
|
||||
alert_status, AlertSize.mid,
|
||||
Priority.LOWER, VisualAlert.none, AudibleAlert.none, 5.),
|
||||
|
||||
|
||||
# ********** helper functions **********
|
||||
def get_display_speed(speed_ms: float, metric: bool) -> str:
|
||||
speed = int(round(speed_ms * (CV.MS_TO_KPH if metric else CV.MS_TO_MPH)))
|
||||
unit = 'km/h' if metric else 'mph'
|
||||
return f"{speed} {unit}"
|
||||
|
||||
|
||||
# ********** alert callback functions **********
|
||||
|
||||
AlertCallbackType = Callable[[car.CarParams, car.CarState, messaging.SubMaster, bool, int], Alert]
|
||||
|
||||
|
||||
def soft_disable_alert(alert_text_2: str) -> AlertCallbackType:
|
||||
def func(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
if soft_disable_time < int(0.5 / DT_CTRL):
|
||||
return ImmediateDisableAlert(alert_text_2)
|
||||
return SoftDisableAlert(alert_text_2)
|
||||
return func
|
||||
|
||||
def user_soft_disable_alert(alert_text_2: str) -> AlertCallbackType:
|
||||
def func(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
if soft_disable_time < int(0.5 / DT_CTRL):
|
||||
return ImmediateDisableAlert(alert_text_2)
|
||||
return UserSoftDisableAlert(alert_text_2)
|
||||
return func
|
||||
|
||||
def startup_master_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
branch = get_short_branch("") # Ensure get_short_branch is cached to avoid lags on startup
|
||||
if "REPLAY" in os.environ:
|
||||
branch = "replay"
|
||||
|
||||
return StartupAlert("WARNING: This branch is not tested", branch, alert_status=AlertStatus.userPrompt)
|
||||
|
||||
def below_engage_speed_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
return NoEntryAlert(f"Drive above {get_display_speed(CP.minEnableSpeed, metric)} to engage")
|
||||
|
||||
|
||||
def below_steer_speed_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
return Alert(
|
||||
f"Steer Unavailable Below {get_display_speed(CP.minSteerSpeed, metric)}",
|
||||
"",
|
||||
AlertStatus.userPrompt, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.steerRequired, AudibleAlert.prompt, 0.4)
|
||||
|
||||
|
||||
def calibration_incomplete_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
first_word = 'Recalibration' if sm['liveCalibration'].calStatus == log.LiveCalibrationData.Status.recalibrating else 'Calibration'
|
||||
return Alert(
|
||||
f"{first_word} in Progress: {sm['liveCalibration'].calPerc:.0f}%",
|
||||
f"Drive Above {get_display_speed(MIN_SPEED_FILTER, metric)}",
|
||||
AlertStatus.normal, AlertSize.mid,
|
||||
Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .2)
|
||||
|
||||
|
||||
def no_gps_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
return Alert(
|
||||
"Poor GPS reception",
|
||||
"Hardware malfunctioning if sky is visible",
|
||||
AlertStatus.normal, AlertSize.mid,
|
||||
Priority.LOWER, VisualAlert.none, AudibleAlert.none, .2, creation_delay=300.)
|
||||
|
||||
# *** debug alerts ***
|
||||
|
||||
def out_of_space_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
full_perc = round(100. - sm['deviceState'].freeSpacePercent)
|
||||
return NormalPermanentAlert("Out of Storage", f"{full_perc}% full")
|
||||
|
||||
|
||||
def posenet_invalid_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
mdl = sm['modelV2'].velocity.x[0] if len(sm['modelV2'].velocity.x) else math.nan
|
||||
err = CS.vEgo - mdl
|
||||
msg = f"Speed Error: {err:.1f} m/s"
|
||||
return NoEntryAlert(msg, alert_text_1="Posenet Speed Invalid")
|
||||
|
||||
|
||||
def process_not_running_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
not_running = [p.name for p in sm['managerState'].processes if not p.running and p.shouldBeRunning]
|
||||
msg = ', '.join(not_running)
|
||||
return NoEntryAlert(msg, alert_text_1="Process Not Running")
|
||||
|
||||
|
||||
def comm_issue_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
bs = [s for s in sm.data.keys() if not sm.all_checks([s, ])]
|
||||
msg = ', '.join(bs[:4]) # can't fit too many on one line
|
||||
return NoEntryAlert(msg, alert_text_1="Communication Issue Between Processes")
|
||||
|
||||
|
||||
def camera_malfunction_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
all_cams = ('roadCameraState', 'driverCameraState', 'wideRoadCameraState')
|
||||
bad_cams = [s.replace('State', '') for s in all_cams if s in sm.data.keys() and not sm.all_checks([s, ])]
|
||||
return NormalPermanentAlert("Camera Malfunction", ', '.join(bad_cams))
|
||||
|
||||
|
||||
def calibration_invalid_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
rpy = sm['liveCalibration'].rpyCalib
|
||||
yaw = math.degrees(rpy[2] if len(rpy) == 3 else math.nan)
|
||||
pitch = math.degrees(rpy[1] if len(rpy) == 3 else math.nan)
|
||||
angles = f"Remount Device (Pitch: {pitch:.1f}°, Yaw: {yaw:.1f}°)"
|
||||
return NormalPermanentAlert("Calibration Invalid", angles)
|
||||
|
||||
|
||||
def overheat_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
cpu = max(sm['deviceState'].cpuTempC, default=0.)
|
||||
gpu = max(sm['deviceState'].gpuTempC, default=0.)
|
||||
temp = max((cpu, gpu, sm['deviceState'].memoryTempC))
|
||||
return NormalPermanentAlert("System Overheated", f"{temp:.0f} °C")
|
||||
|
||||
|
||||
def low_memory_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
return NormalPermanentAlert("Low Memory", f"{sm['deviceState'].memoryUsagePercent}% used")
|
||||
|
||||
|
||||
def high_cpu_usage_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
x = max(sm['deviceState'].cpuUsagePercent, default=0.)
|
||||
return NormalPermanentAlert("High CPU Usage", f"{x}% used")
|
||||
|
||||
|
||||
def modeld_lagging_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
return NormalPermanentAlert("Driving Model Lagging", f"{sm['modelV2'].frameDropPerc:.1f}% frames dropped")
|
||||
|
||||
|
||||
def wrong_car_mode_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
text = "Enable Adaptive Cruise to Engage"
|
||||
if CP.carName == "honda":
|
||||
text = "Enable Main Switch to Engage"
|
||||
return NoEntryAlert(text)
|
||||
|
||||
|
||||
def joystick_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert:
|
||||
axes = sm['testJoystick'].axes
|
||||
gb, steer = list(axes)[:2] if len(axes) else (0., 0.)
|
||||
vals = f"Gas: {round(gb * 100.)}%, Steer: {round(steer * 100.)}%"
|
||||
return NormalPermanentAlert("Joystick Mode", vals)
|
||||
|
||||
|
||||
|
||||
EVENTS: Dict[int, Dict[str, Union[Alert, AlertCallbackType]]] = {
|
||||
# ********** events with no alerts **********
|
||||
|
||||
EventName.stockFcw: {},
|
||||
|
||||
# ********** events only containing alerts displayed in all states **********
|
||||
|
||||
EventName.joystickDebug: {
|
||||
ET.WARNING: joystick_alert,
|
||||
ET.PERMANENT: NormalPermanentAlert("Joystick Mode"),
|
||||
},
|
||||
|
||||
EventName.controlsInitializing: {
|
||||
ET.NO_ENTRY: NoEntryAlert("System Initializing"),
|
||||
},
|
||||
|
||||
EventName.startup: {
|
||||
ET.PERMANENT: StartupAlert("Be ready to take over at any time")
|
||||
},
|
||||
|
||||
EventName.startupMaster: {
|
||||
ET.PERMANENT: startup_master_alert,
|
||||
},
|
||||
|
||||
# Car is recognized, but marked as dashcam only
|
||||
EventName.startupNoControl: {
|
||||
ET.PERMANENT: StartupAlert("Dashcam mode"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Dashcam mode"),
|
||||
},
|
||||
|
||||
# Car is not recognized
|
||||
EventName.startupNoCar: {
|
||||
ET.PERMANENT: StartupAlert("Dashcam mode for unsupported car"),
|
||||
},
|
||||
|
||||
EventName.startupNoFw: {
|
||||
ET.PERMANENT: StartupAlert("Car Unrecognized",
|
||||
"Check comma power connections",
|
||||
alert_status=AlertStatus.userPrompt),
|
||||
},
|
||||
|
||||
EventName.dashcamMode: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Dashcam Mode",
|
||||
priority=Priority.LOWEST),
|
||||
},
|
||||
|
||||
EventName.invalidLkasSetting: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Stock LKAS is on",
|
||||
"Turn off stock LKAS to engage"),
|
||||
},
|
||||
|
||||
EventName.cruiseMismatch: {
|
||||
#ET.PERMANENT: ImmediateDisableAlert("openpilot failed to cancel cruise"),
|
||||
},
|
||||
|
||||
# openpilot doesn't recognize the car. This switches openpilot into a
|
||||
# read-only mode. This can be solved by adding your fingerprint.
|
||||
# See https://github.com/commaai/openpilot/wiki/Fingerprinting for more information
|
||||
EventName.carUnrecognized: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Dashcam Mode",
|
||||
"Car Unrecognized",
|
||||
priority=Priority.LOWEST),
|
||||
},
|
||||
|
||||
EventName.stockAeb: {
|
||||
ET.PERMANENT: Alert(
|
||||
"BRAKE!",
|
||||
"Stock AEB: Risk of Collision",
|
||||
AlertStatus.critical, AlertSize.full,
|
||||
Priority.HIGHEST, VisualAlert.fcw, AudibleAlert.none, 2.),
|
||||
ET.NO_ENTRY: NoEntryAlert("Stock AEB: Risk of Collision"),
|
||||
},
|
||||
|
||||
EventName.fcw: {
|
||||
ET.PERMANENT: Alert(
|
||||
"BRAKE!",
|
||||
"Risk of Collision",
|
||||
AlertStatus.critical, AlertSize.full,
|
||||
Priority.HIGHEST, VisualAlert.fcw, AudibleAlert.warningSoft, 2.),
|
||||
},
|
||||
|
||||
EventName.ldw: {
|
||||
ET.PERMANENT: Alert(
|
||||
"Lane Departure Detected",
|
||||
"",
|
||||
AlertStatus.userPrompt, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.ldw, AudibleAlert.prompt, 3.),
|
||||
},
|
||||
|
||||
# ********** events only containing alerts that display while engaged **********
|
||||
|
||||
EventName.steerTempUnavailableSilent: {
|
||||
ET.WARNING: Alert(
|
||||
"Steering Temporarily Unavailable",
|
||||
"",
|
||||
AlertStatus.userPrompt, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.steerRequired, AudibleAlert.prompt, 1.8),
|
||||
},
|
||||
|
||||
EventName.preDriverDistracted: {
|
||||
ET.WARNING: Alert(
|
||||
"Pay Attention",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, .1),
|
||||
},
|
||||
|
||||
EventName.promptDriverDistracted: {
|
||||
ET.WARNING: Alert(
|
||||
"Pay Attention",
|
||||
"Driver Distracted",
|
||||
AlertStatus.userPrompt, AlertSize.mid,
|
||||
Priority.MID, VisualAlert.steerRequired, AudibleAlert.promptDistracted, .1),
|
||||
},
|
||||
|
||||
EventName.driverDistracted: {
|
||||
ET.WARNING: Alert(
|
||||
"DISENGAGE IMMEDIATELY",
|
||||
"Driver Distracted",
|
||||
AlertStatus.critical, AlertSize.full,
|
||||
Priority.HIGH, VisualAlert.steerRequired, AudibleAlert.warningImmediate, .1),
|
||||
},
|
||||
|
||||
EventName.preDriverUnresponsive: {
|
||||
ET.WARNING: Alert(
|
||||
"Touch Steering Wheel: No Face Detected",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.steerRequired, AudibleAlert.none, .1, alert_rate=0.75),
|
||||
},
|
||||
|
||||
EventName.promptDriverUnresponsive: {
|
||||
ET.WARNING: Alert(
|
||||
"Touch Steering Wheel",
|
||||
"Driver Unresponsive",
|
||||
AlertStatus.userPrompt, AlertSize.mid,
|
||||
Priority.MID, VisualAlert.steerRequired, AudibleAlert.promptDistracted, .1),
|
||||
},
|
||||
|
||||
EventName.driverUnresponsive: {
|
||||
ET.WARNING: Alert(
|
||||
"DISENGAGE IMMEDIATELY",
|
||||
"Driver Unresponsive",
|
||||
AlertStatus.critical, AlertSize.full,
|
||||
Priority.HIGH, VisualAlert.steerRequired, AudibleAlert.warningImmediate, .1),
|
||||
},
|
||||
|
||||
EventName.manualRestart: {
|
||||
ET.WARNING: Alert(
|
||||
"TAKE CONTROL",
|
||||
"Resume Driving Manually",
|
||||
AlertStatus.userPrompt, AlertSize.mid,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, .2),
|
||||
},
|
||||
|
||||
EventName.resumeRequired: {
|
||||
ET.WARNING: Alert(
|
||||
"Press Resume to Exit Standstill",
|
||||
"",
|
||||
AlertStatus.userPrompt, AlertSize.small,
|
||||
Priority.MID, VisualAlert.none, AudibleAlert.none, .2),
|
||||
},
|
||||
|
||||
EventName.belowSteerSpeed: {
|
||||
ET.WARNING: below_steer_speed_alert,
|
||||
},
|
||||
|
||||
EventName.preLaneChangeLeft: {
|
||||
ET.WARNING: Alert(
|
||||
"Steer Left to Start Lane Change Once Safe",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, .1, alert_rate=0.75),
|
||||
},
|
||||
|
||||
EventName.preLaneChangeRight: {
|
||||
ET.WARNING: Alert(
|
||||
"Steer Right to Start Lane Change Once Safe",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, .1, alert_rate=0.75),
|
||||
},
|
||||
|
||||
EventName.laneChangeBlocked: {
|
||||
ET.WARNING: Alert(
|
||||
"Car Detected in Blindspot",
|
||||
"",
|
||||
AlertStatus.userPrompt, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.prompt, .1),
|
||||
},
|
||||
|
||||
EventName.laneChange: {
|
||||
ET.WARNING: Alert(
|
||||
"Changing Lanes",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, .1),
|
||||
},
|
||||
|
||||
EventName.steerSaturated: {
|
||||
ET.WARNING: Alert(
|
||||
"Take Control",
|
||||
"Turn Exceeds Steering Limit",
|
||||
AlertStatus.userPrompt, AlertSize.mid,
|
||||
Priority.LOW, VisualAlert.steerRequired, AudibleAlert.promptRepeat, 2.),
|
||||
},
|
||||
|
||||
# Thrown when the fan is driven at >50% but is not rotating
|
||||
EventName.fanMalfunction: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Fan Malfunction", "Likely Hardware Issue"),
|
||||
},
|
||||
|
||||
# Camera is not outputting frames
|
||||
EventName.cameraMalfunction: {
|
||||
ET.PERMANENT: camera_malfunction_alert,
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Camera Malfunction"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Camera Malfunction: Reboot Your Device"),
|
||||
},
|
||||
# Camera framerate too low
|
||||
EventName.cameraFrameRate: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Camera Frame Rate Low", "Reboot your Device"),
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Camera Frame Rate Low"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Camera Frame Rate Low: Reboot Your Device"),
|
||||
},
|
||||
|
||||
# Unused
|
||||
EventName.gpsMalfunction: {
|
||||
ET.PERMANENT: NormalPermanentAlert("GPS Malfunction", "Likely Hardware Issue"),
|
||||
},
|
||||
|
||||
EventName.locationdTemporaryError: {
|
||||
ET.NO_ENTRY: NoEntryAlert("locationd Temporary Error"),
|
||||
ET.SOFT_DISABLE: soft_disable_alert("locationd Temporary Error"),
|
||||
},
|
||||
|
||||
EventName.locationdPermanentError: {
|
||||
ET.NO_ENTRY: NoEntryAlert("locationd Permanent Error"),
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("locationd Permanent Error"),
|
||||
ET.PERMANENT: NormalPermanentAlert("locationd Permanent Error"),
|
||||
},
|
||||
|
||||
# openpilot tries to learn certain parameters about your car by observing
|
||||
# how the car behaves to steering inputs from both human and openpilot driving.
|
||||
# This includes:
|
||||
# - steer ratio: gear ratio of the steering rack. Steering angle divided by tire angle
|
||||
# - tire stiffness: how much grip your tires have
|
||||
# - angle offset: most steering angle sensors are offset and measure a non zero angle when driving straight
|
||||
# This alert is thrown when any of these values exceed a sanity check. This can be caused by
|
||||
# bad alignment or bad sensor data. If this happens consistently consider creating an issue on GitHub
|
||||
EventName.paramsdTemporaryError: {
|
||||
ET.NO_ENTRY: NoEntryAlert("paramsd Temporary Error"),
|
||||
ET.SOFT_DISABLE: soft_disable_alert("paramsd Temporary Error"),
|
||||
},
|
||||
|
||||
EventName.paramsdPermanentError: {
|
||||
ET.NO_ENTRY: NoEntryAlert("paramsd Permanent Error"),
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("paramsd Permanent Error"),
|
||||
ET.PERMANENT: NormalPermanentAlert("paramsd Permanent Error"),
|
||||
},
|
||||
|
||||
# ********** events that affect controls state transitions **********
|
||||
|
||||
EventName.pcmEnable: {
|
||||
ET.ENABLE: EngagementAlert(AudibleAlert.engage),
|
||||
},
|
||||
|
||||
EventName.buttonEnable: {
|
||||
ET.ENABLE: EngagementAlert(AudibleAlert.engage),
|
||||
},
|
||||
|
||||
EventName.pcmDisable: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
},
|
||||
|
||||
EventName.buttonCancel: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
ET.NO_ENTRY: NoEntryAlert("Cancel Pressed"),
|
||||
},
|
||||
|
||||
EventName.brakeHold: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
ET.NO_ENTRY: NoEntryAlert("Brake Hold Active"),
|
||||
},
|
||||
|
||||
EventName.parkBrake: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
ET.NO_ENTRY: NoEntryAlert("Parking Brake Engaged"),
|
||||
},
|
||||
|
||||
EventName.pedalPressed: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
ET.NO_ENTRY: NoEntryAlert("Pedal Pressed",
|
||||
visual_alert=VisualAlert.brakePressed),
|
||||
},
|
||||
|
||||
EventName.preEnableStandstill: {
|
||||
ET.PRE_ENABLE: Alert(
|
||||
"Release Brake to Engage",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .1, creation_delay=1.),
|
||||
},
|
||||
|
||||
EventName.gasPressedOverride: {
|
||||
ET.OVERRIDE_LONGITUDINAL: Alert(
|
||||
"",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.none,
|
||||
Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .1),
|
||||
},
|
||||
|
||||
EventName.steerOverride: {
|
||||
ET.OVERRIDE_LATERAL: Alert(
|
||||
"",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.none,
|
||||
Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .1),
|
||||
},
|
||||
|
||||
EventName.wrongCarMode: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
ET.NO_ENTRY: wrong_car_mode_alert,
|
||||
},
|
||||
|
||||
EventName.resumeBlocked: {
|
||||
ET.NO_ENTRY: NoEntryAlert("Press Set to Engage"),
|
||||
},
|
||||
|
||||
EventName.wrongCruiseMode: {
|
||||
ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage),
|
||||
ET.NO_ENTRY: NoEntryAlert("Adaptive Cruise Disabled"),
|
||||
},
|
||||
|
||||
EventName.steerTempUnavailable: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Steering Temporarily Unavailable"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Steering Temporarily Unavailable"),
|
||||
},
|
||||
|
||||
EventName.steerTimeLimit: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Vehicle Steering Time Limit"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Vehicle Steering Time Limit"),
|
||||
},
|
||||
|
||||
EventName.outOfSpace: {
|
||||
ET.PERMANENT: out_of_space_alert,
|
||||
ET.NO_ENTRY: NoEntryAlert("Out of Storage"),
|
||||
},
|
||||
|
||||
EventName.belowEngageSpeed: {
|
||||
ET.NO_ENTRY: below_engage_speed_alert,
|
||||
},
|
||||
|
||||
EventName.sensorDataInvalid: {
|
||||
ET.PERMANENT: Alert(
|
||||
"Sensor Data Invalid",
|
||||
"Possible Hardware Issue",
|
||||
AlertStatus.normal, AlertSize.mid,
|
||||
Priority.LOWER, VisualAlert.none, AudibleAlert.none, .2, creation_delay=1.),
|
||||
ET.NO_ENTRY: NoEntryAlert("Sensor Data Invalid"),
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Sensor Data Invalid"),
|
||||
},
|
||||
|
||||
EventName.noGps: {
|
||||
ET.PERMANENT: no_gps_alert,
|
||||
},
|
||||
|
||||
EventName.soundsUnavailable: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Speaker not found", "Reboot your Device"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Speaker not found"),
|
||||
},
|
||||
|
||||
EventName.tooDistracted: {
|
||||
ET.NO_ENTRY: NoEntryAlert("Distraction Level Too High"),
|
||||
},
|
||||
|
||||
EventName.overheat: {
|
||||
ET.PERMANENT: overheat_alert,
|
||||
ET.SOFT_DISABLE: soft_disable_alert("System Overheated"),
|
||||
ET.NO_ENTRY: NoEntryAlert("System Overheated"),
|
||||
},
|
||||
|
||||
EventName.wrongGear: {
|
||||
ET.SOFT_DISABLE: user_soft_disable_alert("Gear not D"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Gear not D"),
|
||||
},
|
||||
|
||||
# This alert is thrown when the calibration angles are outside of the acceptable range.
|
||||
# For example if the device is pointed too much to the left or the right.
|
||||
# Usually this can only be solved by removing the mount from the windshield completely,
|
||||
# and attaching while making sure the device is pointed straight forward and is level.
|
||||
# See https://comma.ai/setup for more information
|
||||
EventName.calibrationInvalid: {
|
||||
ET.PERMANENT: calibration_invalid_alert,
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Calibration Invalid: Remount Device & Recalibrate"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Calibration Invalid: Remount Device & Recalibrate"),
|
||||
},
|
||||
|
||||
EventName.calibrationIncomplete: {
|
||||
ET.PERMANENT: calibration_incomplete_alert,
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Calibration Incomplete"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Calibration in Progress"),
|
||||
},
|
||||
|
||||
EventName.calibrationRecalibrating: {
|
||||
ET.PERMANENT: calibration_incomplete_alert,
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Device Remount Detected: Recalibrating"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Remount Detected: Recalibrating"),
|
||||
},
|
||||
|
||||
EventName.doorOpen: {
|
||||
ET.SOFT_DISABLE: user_soft_disable_alert("Door Open"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Door Open"),
|
||||
},
|
||||
|
||||
EventName.seatbeltNotLatched: {
|
||||
ET.SOFT_DISABLE: user_soft_disable_alert("Seatbelt Unlatched"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Seatbelt Unlatched"),
|
||||
},
|
||||
|
||||
EventName.espDisabled: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Electronic Stability Control Disabled"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Electronic Stability Control Disabled"),
|
||||
},
|
||||
|
||||
EventName.lowBattery: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Low Battery"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Low Battery"),
|
||||
},
|
||||
|
||||
# Different openpilot services communicate between each other at a certain
|
||||
# interval. If communication does not follow the regular schedule this alert
|
||||
# is thrown. This can mean a service crashed, did not broadcast a message for
|
||||
# ten times the regular interval, or the average interval is more than 10% too high.
|
||||
EventName.commIssue: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Communication Issue between Processes"),
|
||||
ET.NO_ENTRY: comm_issue_alert,
|
||||
},
|
||||
EventName.commIssueAvgFreq: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Low Communication Rate between Processes"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Low Communication Rate between Processes"),
|
||||
},
|
||||
|
||||
EventName.controlsdLagging: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Controls Lagging"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Controls Process Lagging: Reboot Your Device"),
|
||||
},
|
||||
|
||||
# Thrown when manager detects a service exited unexpectedly while driving
|
||||
EventName.processNotRunning: {
|
||||
ET.NO_ENTRY: process_not_running_alert,
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Process Not Running"),
|
||||
},
|
||||
|
||||
EventName.radarFault: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Radar Error: Restart the Car"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Radar Error: Restart the Car"),
|
||||
},
|
||||
|
||||
# Every frame from the camera should be processed by the model. If modeld
|
||||
# is not processing frames fast enough they have to be dropped. This alert is
|
||||
# thrown when over 20% of frames are dropped.
|
||||
EventName.modeldLagging: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Driving Model Lagging"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Driving Model Lagging"),
|
||||
ET.PERMANENT: modeld_lagging_alert,
|
||||
},
|
||||
|
||||
# Besides predicting the path, lane lines and lead car data the model also
|
||||
# predicts the current velocity and rotation speed of the car. If the model is
|
||||
# very uncertain about the current velocity while the car is moving, this
|
||||
# usually means the model has trouble understanding the scene. This is used
|
||||
# as a heuristic to warn the driver.
|
||||
EventName.posenetInvalid: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Posenet Speed Invalid"),
|
||||
ET.NO_ENTRY: posenet_invalid_alert,
|
||||
},
|
||||
|
||||
# When the localizer detects an acceleration of more than 40 m/s^2 (~4G) we
|
||||
# alert the driver the device might have fallen from the windshield.
|
||||
EventName.deviceFalling: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Device Fell Off Mount"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Device Fell Off Mount"),
|
||||
},
|
||||
|
||||
EventName.lowMemory: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("Low Memory: Reboot Your Device"),
|
||||
ET.PERMANENT: low_memory_alert,
|
||||
ET.NO_ENTRY: NoEntryAlert("Low Memory: Reboot Your Device"),
|
||||
},
|
||||
|
||||
EventName.highCpuUsage: {
|
||||
#ET.SOFT_DISABLE: soft_disable_alert("System Malfunction: Reboot Your Device"),
|
||||
#ET.PERMANENT: NormalPermanentAlert("System Malfunction", "Reboot your Device"),
|
||||
ET.NO_ENTRY: high_cpu_usage_alert,
|
||||
},
|
||||
|
||||
EventName.accFaulted: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Cruise Fault: Restart the Car"),
|
||||
ET.PERMANENT: NormalPermanentAlert("Cruise Fault: Restart the car to engage"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Cruise Fault: Restart the Car"),
|
||||
},
|
||||
|
||||
EventName.controlsMismatch: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Controls Mismatch"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Controls Mismatch"),
|
||||
},
|
||||
|
||||
EventName.roadCameraError: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Camera CRC Error - Road",
|
||||
duration=1.,
|
||||
creation_delay=30.),
|
||||
},
|
||||
|
||||
EventName.wideRoadCameraError: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Camera CRC Error - Road Fisheye",
|
||||
duration=1.,
|
||||
creation_delay=30.),
|
||||
},
|
||||
|
||||
EventName.driverCameraError: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Camera CRC Error - Driver",
|
||||
duration=1.,
|
||||
creation_delay=30.),
|
||||
},
|
||||
|
||||
# Sometimes the USB stack on the device can get into a bad state
|
||||
# causing the connection to the panda to be lost
|
||||
EventName.usbError: {
|
||||
ET.SOFT_DISABLE: soft_disable_alert("USB Error: Reboot Your Device"),
|
||||
ET.PERMANENT: NormalPermanentAlert("USB Error: Reboot Your Device", ""),
|
||||
ET.NO_ENTRY: NoEntryAlert("USB Error: Reboot Your Device"),
|
||||
},
|
||||
|
||||
# This alert can be thrown for the following reasons:
|
||||
# - No CAN data received at all
|
||||
# - CAN data is received, but some message are not received at the right frequency
|
||||
# If you're not writing a new car port, this is usually cause by faulty wiring
|
||||
EventName.canError: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("CAN Error"),
|
||||
ET.PERMANENT: Alert(
|
||||
"CAN Error: Check Connections",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, 1., creation_delay=1.),
|
||||
ET.NO_ENTRY: NoEntryAlert("CAN Error: Check Connections"),
|
||||
},
|
||||
|
||||
EventName.canBusMissing: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("CAN Bus Disconnected"),
|
||||
ET.PERMANENT: Alert(
|
||||
"CAN Bus Disconnected: Likely Faulty Cable",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.small,
|
||||
Priority.LOW, VisualAlert.none, AudibleAlert.none, 1., creation_delay=1.),
|
||||
ET.NO_ENTRY: NoEntryAlert("CAN Bus Disconnected: Check Connections"),
|
||||
},
|
||||
|
||||
EventName.steerUnavailable: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("LKAS Fault: Restart the Car"),
|
||||
ET.PERMANENT: NormalPermanentAlert("LKAS Fault: Restart the car to engage"),
|
||||
ET.NO_ENTRY: NoEntryAlert("LKAS Fault: Restart the Car"),
|
||||
},
|
||||
|
||||
EventName.reverseGear: {
|
||||
ET.PERMANENT: Alert(
|
||||
"Reverse\nGear",
|
||||
"",
|
||||
AlertStatus.normal, AlertSize.full,
|
||||
Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .2, creation_delay=0.5),
|
||||
ET.USER_DISABLE: ImmediateDisableAlert("Reverse Gear"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Reverse Gear"),
|
||||
},
|
||||
|
||||
# On cars that use stock ACC the car can decide to cancel ACC for various reasons.
|
||||
# When this happens we can no long control the car so the user needs to be warned immediately.
|
||||
EventName.cruiseDisabled: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Cruise Is Off"),
|
||||
},
|
||||
|
||||
# For planning the trajectory Model Predictive Control (MPC) is used. This is
|
||||
# an optimization algorithm that is not guaranteed to find a feasible solution.
|
||||
# If no solution is found or the solution has a very high cost this alert is thrown.
|
||||
EventName.plannerError: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Planner Solution Error"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Planner Solution Error"),
|
||||
},
|
||||
|
||||
# When the relay in the harness box opens the CAN bus between the LKAS camera
|
||||
# and the rest of the car is separated. When messages from the LKAS camera
|
||||
# are received on the car side this usually means the relay hasn't opened correctly
|
||||
# and this alert is thrown.
|
||||
EventName.relayMalfunction: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Harness Relay Malfunction"),
|
||||
ET.PERMANENT: NormalPermanentAlert("Harness Relay Malfunction", "Check Hardware"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Harness Relay Malfunction"),
|
||||
},
|
||||
|
||||
EventName.speedTooLow: {
|
||||
ET.IMMEDIATE_DISABLE: Alert(
|
||||
"openpilot Canceled",
|
||||
"Speed too low",
|
||||
AlertStatus.normal, AlertSize.mid,
|
||||
Priority.HIGH, VisualAlert.none, AudibleAlert.disengage, 3.),
|
||||
},
|
||||
|
||||
# When the car is driving faster than most cars in the training data, the model outputs can be unpredictable.
|
||||
EventName.speedTooHigh: {
|
||||
ET.WARNING: Alert(
|
||||
"Speed Too High",
|
||||
"Model uncertain at this speed",
|
||||
AlertStatus.userPrompt, AlertSize.mid,
|
||||
Priority.HIGH, VisualAlert.steerRequired, AudibleAlert.promptRepeat, 4.),
|
||||
ET.NO_ENTRY: NoEntryAlert("Slow down to engage"),
|
||||
},
|
||||
|
||||
EventName.lowSpeedLockout: {
|
||||
ET.PERMANENT: NormalPermanentAlert("Cruise Fault: Restart the car to engage"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Cruise Fault: Restart the Car"),
|
||||
},
|
||||
|
||||
EventName.lkasDisabled: {
|
||||
ET.PERMANENT: NormalPermanentAlert("LKAS Disabled: Enable LKAS to engage"),
|
||||
ET.NO_ENTRY: NoEntryAlert("LKAS Disabled"),
|
||||
},
|
||||
|
||||
EventName.vehicleSensorsInvalid: {
|
||||
ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Vehicle Sensors Invalid"),
|
||||
ET.PERMANENT: NormalPermanentAlert("Vehicle Sensors Calibrating", "Drive to Calibrate"),
|
||||
ET.NO_ENTRY: NoEntryAlert("Vehicle Sensors Calibrating"),
|
||||
},
|
||||
|
||||
}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# print all alerts by type and priority
|
||||
from cereal.services import SERVICE_LIST
|
||||
from collections import defaultdict
|
||||
|
||||
event_names = {v: k for k, v in EventName.schema.enumerants.items()}
|
||||
alerts_by_type: Dict[str, Dict[Priority, List[str]]] = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
CP = car.CarParams.new_message()
|
||||
CS = car.CarState.new_message()
|
||||
sm = messaging.SubMaster(list(SERVICE_LIST.keys()))
|
||||
|
||||
for i, alerts in EVENTS.items():
|
||||
for et, alert in alerts.items():
|
||||
if callable(alert):
|
||||
alert = alert(CP, CS, sm, False, 1)
|
||||
alerts_by_type[et][alert.priority].append(event_names[i])
|
||||
|
||||
all_alerts: Dict[str, List[tuple[Priority, List[str]]]] = {}
|
||||
for et, priority_alerts in alerts_by_type.items():
|
||||
all_alerts[et] = sorted(priority_alerts.items(), key=lambda x: x[0], reverse=True)
|
||||
|
||||
for status, evs in sorted(all_alerts.items(), key=lambda x: x[0]):
|
||||
print(f"**** {status} ****")
|
||||
for p, alert_list in evs:
|
||||
print(f" {repr(p)}:")
|
||||
print(" ", ', '.join(alert_list), "\n")
|
||||
32
selfdrive/controls/lib/latcontrol.py
Normal file
32
selfdrive/controls/lib/latcontrol.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from abc import abstractmethod, ABC
|
||||
|
||||
from openpilot.common.numpy_fast import clip
|
||||
from openpilot.common.realtime import DT_CTRL
|
||||
|
||||
MIN_LATERAL_CONTROL_SPEED = 0.3 # m/s
|
||||
|
||||
|
||||
class LatControl(ABC):
|
||||
def __init__(self, CP, CI):
|
||||
self.sat_count_rate = 1.0 * DT_CTRL
|
||||
self.sat_limit = CP.steerLimitTimer
|
||||
self.sat_count = 0.
|
||||
self.sat_check_min_speed = 10.
|
||||
|
||||
# we define the steer torque scale as [-1.0...1.0]
|
||||
self.steer_max = 1.0
|
||||
|
||||
@abstractmethod
|
||||
def update(self, active, CS, VM, params, steer_limited, desired_curvature, desired_curvature_rate, llk):
|
||||
pass
|
||||
|
||||
def reset(self):
|
||||
self.sat_count = 0.
|
||||
|
||||
def _check_saturation(self, saturated, CS, steer_limited):
|
||||
if saturated and CS.vEgo > self.sat_check_min_speed and not steer_limited and not CS.steeringPressed:
|
||||
self.sat_count += self.sat_count_rate
|
||||
else:
|
||||
self.sat_count -= self.sat_count_rate
|
||||
self.sat_count = clip(self.sat_count, 0.0, self.sat_limit)
|
||||
return self.sat_count > (self.sat_limit - 1e-3)
|
||||
29
selfdrive/controls/lib/latcontrol_angle.py
Normal file
29
selfdrive/controls/lib/latcontrol_angle.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import math
|
||||
|
||||
from cereal import log
|
||||
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
|
||||
|
||||
STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees
|
||||
|
||||
|
||||
class LatControlAngle(LatControl):
|
||||
def __init__(self, CP, CI):
|
||||
super().__init__(CP, CI)
|
||||
self.sat_check_min_speed = 5.
|
||||
|
||||
def update(self, active, CS, VM, params, steer_limited, desired_curvature, desired_curvature_rate, llk):
|
||||
angle_log = log.ControlsState.LateralAngleState.new_message()
|
||||
|
||||
if not active:
|
||||
angle_log.active = False
|
||||
angle_steers_des = float(CS.steeringAngleDeg)
|
||||
else:
|
||||
angle_log.active = True
|
||||
angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
|
||||
angle_steers_des += params.angleOffsetDeg
|
||||
|
||||
angle_control_saturated = abs(angle_steers_des - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD
|
||||
angle_log.saturated = self._check_saturation(angle_control_saturated, CS, False)
|
||||
angle_log.steeringAngleDeg = float(CS.steeringAngleDeg)
|
||||
angle_log.steeringAngleDesiredDeg = angle_steers_des
|
||||
return 0, float(angle_steers_des), angle_log
|
||||
48
selfdrive/controls/lib/latcontrol_pid.py
Normal file
48
selfdrive/controls/lib/latcontrol_pid.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import math
|
||||
|
||||
from cereal import log
|
||||
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
|
||||
from openpilot.selfdrive.controls.lib.pid import PIDController
|
||||
|
||||
|
||||
class LatControlPID(LatControl):
|
||||
def __init__(self, CP, CI):
|
||||
super().__init__(CP, CI)
|
||||
self.pid = PIDController((CP.lateralTuning.pid.kpBP, CP.lateralTuning.pid.kpV),
|
||||
(CP.lateralTuning.pid.kiBP, CP.lateralTuning.pid.kiV),
|
||||
k_f=CP.lateralTuning.pid.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
|
||||
self.get_steer_feedforward = CI.get_steer_feedforward_function()
|
||||
|
||||
def reset(self):
|
||||
super().reset()
|
||||
self.pid.reset()
|
||||
|
||||
def update(self, active, CS, VM, params, steer_limited, desired_curvature, desired_curvature_rate, llk):
|
||||
pid_log = log.ControlsState.LateralPIDState.new_message()
|
||||
pid_log.steeringAngleDeg = float(CS.steeringAngleDeg)
|
||||
pid_log.steeringRateDeg = float(CS.steeringRateDeg)
|
||||
|
||||
angle_steers_des_no_offset = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
|
||||
angle_steers_des = angle_steers_des_no_offset + params.angleOffsetDeg
|
||||
error = angle_steers_des - CS.steeringAngleDeg
|
||||
|
||||
pid_log.steeringAngleDesiredDeg = angle_steers_des
|
||||
pid_log.angleError = error
|
||||
if not active:
|
||||
output_steer = 0.0
|
||||
pid_log.active = False
|
||||
self.pid.reset()
|
||||
else:
|
||||
# offset does not contribute to resistive torque
|
||||
steer_feedforward = self.get_steer_feedforward(angle_steers_des_no_offset, CS.vEgo)
|
||||
|
||||
output_steer = self.pid.update(error, override=CS.steeringPressed,
|
||||
feedforward=steer_feedforward, speed=CS.vEgo)
|
||||
pid_log.active = True
|
||||
pid_log.p = self.pid.p
|
||||
pid_log.i = self.pid.i
|
||||
pid_log.f = self.pid.f
|
||||
pid_log.output = output_steer
|
||||
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS, steer_limited)
|
||||
|
||||
return output_steer, angle_steers_des, pid_log
|
||||
91
selfdrive/controls/lib/latcontrol_torque.py
Normal file
91
selfdrive/controls/lib/latcontrol_torque.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import math
|
||||
|
||||
from cereal import log
|
||||
from openpilot.common.numpy_fast import interp
|
||||
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
|
||||
from openpilot.selfdrive.controls.lib.pid import PIDController
|
||||
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
|
||||
|
||||
# At higher speeds (25+mph) we can assume:
|
||||
# Lateral acceleration achieved by a specific car correlates to
|
||||
# torque applied to the steering rack. It does not correlate to
|
||||
# wheel slip, or to speed.
|
||||
|
||||
# This controller applies torque to achieve desired lateral
|
||||
# accelerations. To compensate for the low speed effects we
|
||||
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
|
||||
# friction in the steering wheel that needs to be overcome to
|
||||
# move it at all, this is compensated for too.
|
||||
|
||||
LOW_SPEED_X = [0, 10, 20, 30]
|
||||
LOW_SPEED_Y = [15, 13, 10, 5]
|
||||
|
||||
|
||||
class LatControlTorque(LatControl):
|
||||
def __init__(self, CP, CI):
|
||||
super().__init__(CP, CI)
|
||||
self.torque_params = CP.lateralTuning.torque
|
||||
self.pid = PIDController(self.torque_params.kp, self.torque_params.ki,
|
||||
k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
|
||||
self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
|
||||
self.use_steering_angle = self.torque_params.useSteeringAngle
|
||||
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
|
||||
|
||||
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
|
||||
self.torque_params.latAccelFactor = latAccelFactor
|
||||
self.torque_params.latAccelOffset = latAccelOffset
|
||||
self.torque_params.friction = friction
|
||||
|
||||
def update(self, active, CS, VM, params, steer_limited, desired_curvature, desired_curvature_rate, llk):
|
||||
pid_log = log.ControlsState.LateralTorqueState.new_message()
|
||||
|
||||
if not active:
|
||||
output_torque = 0.0
|
||||
pid_log.active = False
|
||||
else:
|
||||
if self.use_steering_angle:
|
||||
actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
|
||||
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
|
||||
else:
|
||||
actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
|
||||
actual_curvature_llk = llk.angularVelocityCalibrated.value[2] / CS.vEgo
|
||||
actual_curvature = interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_llk])
|
||||
curvature_deadzone = 0.0
|
||||
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
|
||||
|
||||
# desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
|
||||
# desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
|
||||
actual_lateral_accel = actual_curvature * CS.vEgo ** 2
|
||||
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
|
||||
|
||||
low_speed_factor = interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
|
||||
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
|
||||
measurement = actual_lateral_accel + low_speed_factor * actual_curvature
|
||||
gravity_adjusted_lateral_accel = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY
|
||||
torque_from_setpoint = self.torque_from_lateral_accel(setpoint, self.torque_params, setpoint,
|
||||
lateral_accel_deadzone, friction_compensation=False)
|
||||
torque_from_measurement = self.torque_from_lateral_accel(measurement, self.torque_params, measurement,
|
||||
lateral_accel_deadzone, friction_compensation=False)
|
||||
pid_log.error = torque_from_setpoint - torque_from_measurement
|
||||
ff = self.torque_from_lateral_accel(gravity_adjusted_lateral_accel, self.torque_params,
|
||||
desired_lateral_accel - actual_lateral_accel,
|
||||
lateral_accel_deadzone, friction_compensation=True)
|
||||
|
||||
freeze_integrator = steer_limited or CS.steeringPressed or CS.vEgo < 5
|
||||
output_torque = self.pid.update(pid_log.error,
|
||||
feedforward=ff,
|
||||
speed=CS.vEgo,
|
||||
freeze_integrator=freeze_integrator)
|
||||
|
||||
pid_log.active = True
|
||||
pid_log.p = self.pid.p
|
||||
pid_log.i = self.pid.i
|
||||
pid_log.d = self.pid.d
|
||||
pid_log.f = self.pid.f
|
||||
pid_log.output = -output_torque
|
||||
pid_log.actualLateralAccel = actual_lateral_accel
|
||||
pid_log.desiredLateralAccel = desired_lateral_accel
|
||||
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited)
|
||||
|
||||
# TODO left is positive in this convention
|
||||
return -output_torque, 0.0, pid_log
|
||||
2
selfdrive/controls/lib/lateral_mpc_lib/.gitignore
vendored
Normal file
2
selfdrive/controls/lib/lateral_mpc_lib/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
acados_ocp_lat.json
|
||||
c_generated_code/
|
||||
89
selfdrive/controls/lib/lateral_mpc_lib/SConscript
Normal file
89
selfdrive/controls/lib/lateral_mpc_lib/SConscript
Normal file
@@ -0,0 +1,89 @@
|
||||
Import('env', 'envCython', 'arch')
|
||||
|
||||
gen = "c_generated_code"
|
||||
|
||||
casadi_model = [
|
||||
f'{gen}/lat_model/lat_expl_ode_fun.c',
|
||||
f'{gen}/lat_model/lat_expl_vde_forw.c',
|
||||
]
|
||||
|
||||
casadi_cost_y = [
|
||||
f'{gen}/lat_cost/lat_cost_y_fun.c',
|
||||
f'{gen}/lat_cost/lat_cost_y_fun_jac_ut_xt.c',
|
||||
f'{gen}/lat_cost/lat_cost_y_hess.c',
|
||||
]
|
||||
|
||||
casadi_cost_e = [
|
||||
f'{gen}/lat_cost/lat_cost_y_e_fun.c',
|
||||
f'{gen}/lat_cost/lat_cost_y_e_fun_jac_ut_xt.c',
|
||||
f'{gen}/lat_cost/lat_cost_y_e_hess.c',
|
||||
]
|
||||
|
||||
casadi_cost_0 = [
|
||||
f'{gen}/lat_cost/lat_cost_y_0_fun.c',
|
||||
f'{gen}/lat_cost/lat_cost_y_0_fun_jac_ut_xt.c',
|
||||
f'{gen}/lat_cost/lat_cost_y_0_hess.c',
|
||||
]
|
||||
|
||||
build_files = [f'{gen}/acados_solver_lat.c'] + casadi_model + casadi_cost_y + casadi_cost_e + casadi_cost_0
|
||||
|
||||
# extra generated files used to trigger a rebuild
|
||||
generated_files = [
|
||||
f'{gen}/Makefile',
|
||||
|
||||
f'{gen}/main_lat.c',
|
||||
f'{gen}/main_sim_lat.c',
|
||||
f'{gen}/acados_solver_lat.h',
|
||||
f'{gen}/acados_sim_solver_lat.h',
|
||||
f'{gen}/acados_sim_solver_lat.c',
|
||||
f'{gen}/acados_solver.pxd',
|
||||
|
||||
f'{gen}/lat_model/lat_expl_vde_adj.c',
|
||||
|
||||
f'{gen}/lat_model/lat_model.h',
|
||||
f'{gen}/lat_constraints/lat_constraints.h',
|
||||
f'{gen}/lat_cost/lat_cost.h',
|
||||
] + build_files
|
||||
|
||||
acados_dir = '#third_party/acados'
|
||||
acados_templates_dir = '#third_party/acados/acados_template/c_templates_tera'
|
||||
|
||||
source_list = ['lat_mpc.py',
|
||||
'#selfdrive/modeld/constants.py',
|
||||
f'{acados_dir}/include/acados_c/ocp_nlp_interface.h',
|
||||
f'{acados_templates_dir}/acados_solver.in.c',
|
||||
]
|
||||
|
||||
lenv = env.Clone()
|
||||
lenv.Clean(generated_files, Dir(gen))
|
||||
|
||||
generated_lat = lenv.Command(generated_files,
|
||||
source_list,
|
||||
f"cd {Dir('.').abspath} && python3 lat_mpc.py")
|
||||
|
||||
lenv["CFLAGS"].append("-DACADOS_WITH_QPOASES")
|
||||
lenv["CXXFLAGS"].append("-DACADOS_WITH_QPOASES")
|
||||
lenv["CCFLAGS"].append("-Wno-unused")
|
||||
if arch != "Darwin":
|
||||
lenv["LINKFLAGS"].append("-Wl,--disable-new-dtags")
|
||||
lib_solver = lenv.SharedLibrary(f"{gen}/acados_ocp_solver_lat",
|
||||
build_files,
|
||||
LIBS=['m', 'acados', 'hpipm', 'blasfeo', 'qpOASES_e'])
|
||||
|
||||
# generate cython stuff
|
||||
acados_ocp_solver_pyx = File("#third_party/acados/acados_template/acados_ocp_solver_pyx.pyx")
|
||||
acados_ocp_solver_common = File("#third_party/acados/acados_template/acados_solver_common.pxd")
|
||||
libacados_ocp_solver_pxd = File(f'{gen}/acados_solver.pxd')
|
||||
libacados_ocp_solver_c = File(f'{gen}/acados_ocp_solver_pyx.c')
|
||||
|
||||
lenv2 = envCython.Clone()
|
||||
lenv2["LINKFLAGS"] += [lib_solver[0].get_labspath()]
|
||||
lenv2.Command(libacados_ocp_solver_c,
|
||||
[acados_ocp_solver_pyx, acados_ocp_solver_common, libacados_ocp_solver_pxd],
|
||||
f'cython' + \
|
||||
f' -o {libacados_ocp_solver_c.get_labspath()}' + \
|
||||
f' -I {libacados_ocp_solver_pxd.get_dir().get_labspath()}' + \
|
||||
f' -I {acados_ocp_solver_common.get_dir().get_labspath()}' + \
|
||||
f' {acados_ocp_solver_pyx.get_labspath()}')
|
||||
lib_cython = lenv2.Program(f'{gen}/acados_ocp_solver_pyx.so', [libacados_ocp_solver_c])
|
||||
lenv2.Depends(lib_cython, lib_solver)
|
||||
0
selfdrive/controls/lib/lateral_mpc_lib/__init__.py
Normal file
0
selfdrive/controls/lib/lateral_mpc_lib/__init__.py
Normal file
199
selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
Executable file
199
selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
Executable file
@@ -0,0 +1,199 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
from casadi import SX, vertcat, sin, cos
|
||||
# WARNING: imports outside of constants will not trigger a rebuild
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
|
||||
if __name__ == '__main__': # generating code
|
||||
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
|
||||
else:
|
||||
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
|
||||
|
||||
LAT_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code")
|
||||
JSON_FILE = os.path.join(LAT_MPC_DIR, "acados_ocp_lat.json")
|
||||
X_DIM = 4
|
||||
P_DIM = 2
|
||||
COST_E_DIM = 3
|
||||
COST_DIM = COST_E_DIM + 2
|
||||
SPEED_OFFSET = 10.0
|
||||
MODEL_NAME = 'lat'
|
||||
ACADOS_SOLVER_TYPE = 'SQP_RTI'
|
||||
N = 32
|
||||
|
||||
def gen_lat_model():
|
||||
model = AcadosModel()
|
||||
model.name = MODEL_NAME
|
||||
|
||||
# set up states & controls
|
||||
x_ego = SX.sym('x_ego')
|
||||
y_ego = SX.sym('y_ego')
|
||||
psi_ego = SX.sym('psi_ego')
|
||||
psi_rate_ego = SX.sym('psi_rate_ego')
|
||||
model.x = vertcat(x_ego, y_ego, psi_ego, psi_rate_ego)
|
||||
|
||||
# parameters
|
||||
v_ego = SX.sym('v_ego')
|
||||
rotation_radius = SX.sym('rotation_radius')
|
||||
model.p = vertcat(v_ego, rotation_radius)
|
||||
|
||||
# controls
|
||||
psi_accel_ego = SX.sym('psi_accel_ego')
|
||||
model.u = vertcat(psi_accel_ego)
|
||||
|
||||
# xdot
|
||||
x_ego_dot = SX.sym('x_ego_dot')
|
||||
y_ego_dot = SX.sym('y_ego_dot')
|
||||
psi_ego_dot = SX.sym('psi_ego_dot')
|
||||
psi_rate_ego_dot = SX.sym('psi_rate_ego_dot')
|
||||
|
||||
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, psi_rate_ego_dot)
|
||||
|
||||
# dynamics model
|
||||
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * psi_rate_ego,
|
||||
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * psi_rate_ego,
|
||||
psi_rate_ego,
|
||||
psi_accel_ego)
|
||||
model.f_impl_expr = model.xdot - f_expl
|
||||
model.f_expl_expr = f_expl
|
||||
return model
|
||||
|
||||
|
||||
def gen_lat_ocp():
|
||||
ocp = AcadosOcp()
|
||||
ocp.model = gen_lat_model()
|
||||
|
||||
Tf = np.array(ModelConstants.T_IDXS)[N]
|
||||
|
||||
# set dimensions
|
||||
ocp.dims.N = N
|
||||
|
||||
# set cost module
|
||||
ocp.cost.cost_type = 'NONLINEAR_LS'
|
||||
ocp.cost.cost_type_e = 'NONLINEAR_LS'
|
||||
|
||||
Q = np.diag(np.zeros(COST_E_DIM))
|
||||
QR = np.diag(np.zeros(COST_DIM))
|
||||
|
||||
ocp.cost.W = QR
|
||||
ocp.cost.W_e = Q
|
||||
|
||||
y_ego, psi_ego, psi_rate_ego = ocp.model.x[1], ocp.model.x[2], ocp.model.x[3]
|
||||
psi_rate_ego_dot = ocp.model.u[0]
|
||||
v_ego = ocp.model.p[0]
|
||||
|
||||
ocp.parameter_values = np.zeros((P_DIM, ))
|
||||
|
||||
ocp.cost.yref = np.zeros((COST_DIM, ))
|
||||
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
|
||||
# Add offset to smooth out low speed control
|
||||
# TODO unclear if this right solution long term
|
||||
v_ego_offset = v_ego + SPEED_OFFSET
|
||||
# TODO there are two costs on psi_rate_ego_dot, one
|
||||
# is correlated to jerk the other to steering wheel movement
|
||||
# the steering wheel movement cost is added to prevent excessive
|
||||
# wheel movements
|
||||
ocp.model.cost_y_expr = vertcat(y_ego,
|
||||
v_ego_offset * psi_ego,
|
||||
v_ego_offset * psi_rate_ego,
|
||||
v_ego_offset * psi_rate_ego_dot,
|
||||
psi_rate_ego_dot / (v_ego + 0.1))
|
||||
ocp.model.cost_y_expr_e = vertcat(y_ego,
|
||||
v_ego_offset * psi_ego,
|
||||
v_ego_offset * psi_rate_ego)
|
||||
|
||||
# set constraints
|
||||
ocp.constraints.constr_type = 'BGH'
|
||||
ocp.constraints.idxbx = np.array([2,3])
|
||||
ocp.constraints.ubx = np.array([np.radians(90), np.radians(50)])
|
||||
ocp.constraints.lbx = np.array([-np.radians(90), -np.radians(50)])
|
||||
x0 = np.zeros((X_DIM,))
|
||||
ocp.constraints.x0 = x0
|
||||
|
||||
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
|
||||
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
|
||||
ocp.solver_options.integrator_type = 'ERK'
|
||||
ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE
|
||||
ocp.solver_options.qp_solver_iter_max = 1
|
||||
ocp.solver_options.qp_solver_cond_N = 1
|
||||
|
||||
# set prediction horizon
|
||||
ocp.solver_options.tf = Tf
|
||||
ocp.solver_options.shooting_nodes = np.array(ModelConstants.T_IDXS)[:N+1]
|
||||
|
||||
ocp.code_export_directory = EXPORT_DIR
|
||||
return ocp
|
||||
|
||||
|
||||
class LateralMpc():
|
||||
def __init__(self, x0=None):
|
||||
if x0 is None:
|
||||
x0 = np.zeros(X_DIM)
|
||||
self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
|
||||
self.reset(x0)
|
||||
|
||||
def reset(self, x0=None):
|
||||
if x0 is None:
|
||||
x0 = np.zeros(X_DIM)
|
||||
self.x_sol = np.zeros((N+1, X_DIM))
|
||||
self.u_sol = np.zeros((N, 1))
|
||||
self.yref = np.zeros((N+1, COST_DIM))
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, "yref", self.yref[i])
|
||||
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
|
||||
|
||||
# Somehow needed for stable init
|
||||
for i in range(N+1):
|
||||
self.solver.set(i, 'x', np.zeros(X_DIM))
|
||||
self.solver.set(i, 'p', np.zeros(P_DIM))
|
||||
self.solver.constraints_set(0, "lbx", x0)
|
||||
self.solver.constraints_set(0, "ubx", x0)
|
||||
self.solver.solve()
|
||||
self.solution_status = 0
|
||||
self.solve_time = 0.0
|
||||
self.cost = 0
|
||||
|
||||
def set_weights(self, path_weight, heading_weight,
|
||||
lat_accel_weight, lat_jerk_weight,
|
||||
steering_rate_weight):
|
||||
W = np.asfortranarray(np.diag([path_weight, heading_weight,
|
||||
lat_accel_weight, lat_jerk_weight,
|
||||
steering_rate_weight]))
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, 'W', W)
|
||||
self.solver.cost_set(N, 'W', W[:COST_E_DIM,:COST_E_DIM])
|
||||
|
||||
def run(self, x0, p, y_pts, heading_pts, yaw_rate_pts):
|
||||
x0_cp = np.copy(x0)
|
||||
p_cp = np.copy(p)
|
||||
self.solver.constraints_set(0, "lbx", x0_cp)
|
||||
self.solver.constraints_set(0, "ubx", x0_cp)
|
||||
self.yref[:,0] = y_pts
|
||||
v_ego = p_cp[0, 0]
|
||||
# rotation_radius = p_cp[1]
|
||||
self.yref[:,1] = heading_pts * (v_ego + SPEED_OFFSET)
|
||||
self.yref[:,2] = yaw_rate_pts * (v_ego + SPEED_OFFSET)
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, "yref", self.yref[i])
|
||||
self.solver.set(i, "p", p_cp[i])
|
||||
self.solver.set(N, "p", p_cp[N])
|
||||
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
|
||||
|
||||
t = time.monotonic()
|
||||
self.solution_status = self.solver.solve()
|
||||
self.solve_time = time.monotonic() - t
|
||||
|
||||
for i in range(N+1):
|
||||
self.x_sol[i] = self.solver.get(i, 'x')
|
||||
for i in range(N):
|
||||
self.u_sol[i] = self.solver.get(i, 'u')
|
||||
self.cost = self.solver.get_cost()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ocp = gen_lat_ocp()
|
||||
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE)
|
||||
# AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
|
||||
74
selfdrive/controls/lib/lateral_planner.py
Normal file
74
selfdrive/controls/lib/lateral_planner.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import numpy as np
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
|
||||
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
|
||||
import cereal.messaging as messaging
|
||||
from cereal import log
|
||||
|
||||
TRAJECTORY_SIZE = 33
|
||||
CAMERA_OFFSET = 0.04
|
||||
|
||||
class LateralPlanner:
|
||||
def __init__(self, CP, debug=False):
|
||||
self.DH = DesireHelper()
|
||||
|
||||
# Vehicle model parameters used to calculate lateral movement of car
|
||||
self.factor1 = CP.wheelbase - CP.centerToFront
|
||||
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
|
||||
self.last_cloudlog_t = 0
|
||||
self.solution_invalid_cnt = 0
|
||||
|
||||
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
|
||||
self.v_ego = MIN_SPEED
|
||||
self.l_lane_change_prob = 0.0
|
||||
self.r_lane_change_prob = 0.0
|
||||
|
||||
self.debug_mode = debug
|
||||
|
||||
def update(self, sm):
|
||||
v_ego_car = sm['carState'].vEgo
|
||||
|
||||
# Parse model predictions
|
||||
md = sm['modelV2']
|
||||
if len(md.position.x) == TRAJECTORY_SIZE and len(md.velocity.x) == TRAJECTORY_SIZE and len(md.lateralPlannerSolution.x) == TRAJECTORY_SIZE:
|
||||
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
||||
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
|
||||
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
|
||||
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
|
||||
self.v_ego = self.v_plan[0]
|
||||
self.x_sol = np.column_stack([md.lateralPlannerSolution.x, md.lateralPlannerSolution.y, md.lateralPlannerSolution.yaw, md.lateralPlannerSolution.yawRate])
|
||||
|
||||
# Lane change logic
|
||||
desire_state = md.meta.desireState
|
||||
if len(desire_state):
|
||||
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
|
||||
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
|
||||
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
|
||||
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
|
||||
|
||||
def publish(self, sm, pm):
|
||||
plan_send = messaging.new_message('lateralPlan')
|
||||
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
|
||||
|
||||
lateralPlan = plan_send.lateralPlan
|
||||
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
||||
lateralPlan.dPathPoints = self.path_xyz[:,1].tolist()
|
||||
lateralPlan.psis = self.x_sol[0:CONTROL_N, 2].tolist()
|
||||
|
||||
lateralPlan.curvatures = (self.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
|
||||
lateralPlan.curvatureRates = [float(0) for _ in range(CONTROL_N-1)] # TODO: unused
|
||||
|
||||
lateralPlan.mpcSolutionValid = bool(1)
|
||||
lateralPlan.solverExecutionTime = 0.0
|
||||
if self.debug_mode:
|
||||
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
|
||||
lateralPlan.solverState.x = self.x_sol.tolist()
|
||||
|
||||
lateralPlan.desire = self.DH.desire
|
||||
lateralPlan.useLaneLines = False
|
||||
lateralPlan.laneChangeState = self.DH.lane_change_state
|
||||
lateralPlan.laneChangeDirection = self.DH.lane_change_direction
|
||||
|
||||
pm.send('lateralPlan', plan_send)
|
||||
132
selfdrive/controls/lib/longcontrol.py
Normal file
132
selfdrive/controls/lib/longcontrol.py
Normal file
@@ -0,0 +1,132 @@
|
||||
from cereal import car
|
||||
from openpilot.common.numpy_fast import clip, interp
|
||||
from openpilot.common.realtime import DT_CTRL
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, apply_deadzone
|
||||
from openpilot.selfdrive.controls.lib.pid import PIDController
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
|
||||
LongCtrlState = car.CarControl.Actuators.LongControlState
|
||||
|
||||
|
||||
def long_control_state_trans(CP, active, long_control_state, v_ego, v_target,
|
||||
v_target_1sec, brake_pressed, cruise_standstill):
|
||||
# Ignore cruise standstill if car has a gas interceptor
|
||||
cruise_standstill = cruise_standstill and not CP.enableGasInterceptor
|
||||
accelerating = v_target_1sec > v_target
|
||||
planned_stop = (v_target < CP.vEgoStopping and
|
||||
v_target_1sec < CP.vEgoStopping and
|
||||
not accelerating)
|
||||
stay_stopped = (v_ego < CP.vEgoStopping and
|
||||
(brake_pressed or cruise_standstill))
|
||||
stopping_condition = planned_stop or stay_stopped
|
||||
|
||||
starting_condition = (v_target_1sec > CP.vEgoStarting and
|
||||
accelerating and
|
||||
not cruise_standstill and
|
||||
not brake_pressed)
|
||||
started_condition = v_ego > CP.vEgoStarting
|
||||
|
||||
if not active:
|
||||
long_control_state = LongCtrlState.off
|
||||
|
||||
else:
|
||||
if long_control_state in (LongCtrlState.off, LongCtrlState.pid):
|
||||
long_control_state = LongCtrlState.pid
|
||||
if stopping_condition:
|
||||
long_control_state = LongCtrlState.stopping
|
||||
|
||||
elif long_control_state == LongCtrlState.stopping:
|
||||
if starting_condition and CP.startingState:
|
||||
long_control_state = LongCtrlState.starting
|
||||
elif starting_condition:
|
||||
long_control_state = LongCtrlState.pid
|
||||
|
||||
elif long_control_state == LongCtrlState.starting:
|
||||
if stopping_condition:
|
||||
long_control_state = LongCtrlState.stopping
|
||||
elif started_condition:
|
||||
long_control_state = LongCtrlState.pid
|
||||
|
||||
return long_control_state
|
||||
|
||||
|
||||
class LongControl:
|
||||
def __init__(self, CP):
|
||||
self.CP = CP
|
||||
self.long_control_state = LongCtrlState.off # initialized to off
|
||||
self.pid = PIDController((CP.longitudinalTuning.kpBP, CP.longitudinalTuning.kpV),
|
||||
(CP.longitudinalTuning.kiBP, CP.longitudinalTuning.kiV),
|
||||
k_f=CP.longitudinalTuning.kf, rate=1 / DT_CTRL)
|
||||
self.v_pid = 0.0
|
||||
self.last_output_accel = 0.0
|
||||
|
||||
def reset(self, v_pid):
|
||||
"""Reset PID controller and change setpoint"""
|
||||
self.pid.reset()
|
||||
self.v_pid = v_pid
|
||||
|
||||
def update(self, active, CS, long_plan, accel_limits, t_since_plan):
|
||||
"""Update longitudinal control. This updates the state machine and runs a PID loop"""
|
||||
# Interp control trajectory
|
||||
speeds = long_plan.speeds
|
||||
if len(speeds) == CONTROL_N:
|
||||
v_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
|
||||
a_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], long_plan.accels)
|
||||
|
||||
v_target_lower = interp(self.CP.longitudinalActuatorDelayLowerBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
|
||||
a_target_lower = 2 * (v_target_lower - v_target_now) / self.CP.longitudinalActuatorDelayLowerBound - a_target_now
|
||||
|
||||
v_target_upper = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
|
||||
a_target_upper = 2 * (v_target_upper - v_target_now) / self.CP.longitudinalActuatorDelayUpperBound - a_target_now
|
||||
|
||||
v_target = min(v_target_lower, v_target_upper)
|
||||
a_target = min(a_target_lower, a_target_upper)
|
||||
|
||||
v_target_1sec = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan + 1.0, ModelConstants.T_IDXS[:CONTROL_N], speeds)
|
||||
else:
|
||||
v_target = 0.0
|
||||
v_target_now = 0.0
|
||||
v_target_1sec = 0.0
|
||||
a_target = 0.0
|
||||
|
||||
self.pid.neg_limit = accel_limits[0]
|
||||
self.pid.pos_limit = accel_limits[1]
|
||||
|
||||
output_accel = self.last_output_accel
|
||||
self.long_control_state = long_control_state_trans(self.CP, active, self.long_control_state, CS.vEgo,
|
||||
v_target, v_target_1sec, CS.brakePressed,
|
||||
CS.cruiseState.standstill)
|
||||
|
||||
if self.long_control_state == LongCtrlState.off:
|
||||
self.reset(CS.vEgo)
|
||||
output_accel = 0.
|
||||
|
||||
elif self.long_control_state == LongCtrlState.stopping:
|
||||
if output_accel > self.CP.stopAccel:
|
||||
output_accel = min(output_accel, 0.0)
|
||||
output_accel -= self.CP.stoppingDecelRate * DT_CTRL
|
||||
self.reset(CS.vEgo)
|
||||
|
||||
elif self.long_control_state == LongCtrlState.starting:
|
||||
output_accel = self.CP.startAccel
|
||||
self.reset(CS.vEgo)
|
||||
|
||||
elif self.long_control_state == LongCtrlState.pid:
|
||||
self.v_pid = v_target_now
|
||||
|
||||
# Toyota starts braking more when it thinks you want to stop
|
||||
# Freeze the integrator so we don't accelerate to compensate, and don't allow positive acceleration
|
||||
# TODO too complex, needs to be simplified and tested on toyotas
|
||||
prevent_overshoot = not self.CP.stoppingControl and CS.vEgo < 1.5 and v_target_1sec < 0.7 and v_target_1sec < self.v_pid
|
||||
deadzone = interp(CS.vEgo, self.CP.longitudinalTuning.deadzoneBP, self.CP.longitudinalTuning.deadzoneV)
|
||||
freeze_integrator = prevent_overshoot
|
||||
|
||||
error = self.v_pid - CS.vEgo
|
||||
error_deadzone = apply_deadzone(error, deadzone)
|
||||
output_accel = self.pid.update(error_deadzone, speed=CS.vEgo,
|
||||
feedforward=a_target,
|
||||
freeze_integrator=freeze_integrator)
|
||||
|
||||
self.last_output_accel = clip(output_accel, accel_limits[0], accel_limits[1])
|
||||
|
||||
return self.last_output_accel
|
||||
2
selfdrive/controls/lib/longitudinal_mpc_lib/.gitignore
vendored
Normal file
2
selfdrive/controls/lib/longitudinal_mpc_lib/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
acados_ocp_long.json
|
||||
c_generated_code/
|
||||
96
selfdrive/controls/lib/longitudinal_mpc_lib/SConscript
Normal file
96
selfdrive/controls/lib/longitudinal_mpc_lib/SConscript
Normal file
@@ -0,0 +1,96 @@
|
||||
Import('env', 'envCython', 'arch', 'messaging_python', 'common_python')
|
||||
|
||||
gen = "c_generated_code"
|
||||
|
||||
casadi_model = [
|
||||
f'{gen}/long_model/long_expl_ode_fun.c',
|
||||
f'{gen}/long_model/long_expl_vde_forw.c',
|
||||
]
|
||||
|
||||
casadi_cost_y = [
|
||||
f'{gen}/long_cost/long_cost_y_fun.c',
|
||||
f'{gen}/long_cost/long_cost_y_fun_jac_ut_xt.c',
|
||||
f'{gen}/long_cost/long_cost_y_hess.c',
|
||||
]
|
||||
|
||||
casadi_cost_e = [
|
||||
f'{gen}/long_cost/long_cost_y_e_fun.c',
|
||||
f'{gen}/long_cost/long_cost_y_e_fun_jac_ut_xt.c',
|
||||
f'{gen}/long_cost/long_cost_y_e_hess.c',
|
||||
]
|
||||
|
||||
casadi_cost_0 = [
|
||||
f'{gen}/long_cost/long_cost_y_0_fun.c',
|
||||
f'{gen}/long_cost/long_cost_y_0_fun_jac_ut_xt.c',
|
||||
f'{gen}/long_cost/long_cost_y_0_hess.c',
|
||||
]
|
||||
|
||||
casadi_constraints = [
|
||||
f'{gen}/long_constraints/long_constr_h_fun.c',
|
||||
f'{gen}/long_constraints/long_constr_h_fun_jac_uxt_zt.c',
|
||||
]
|
||||
|
||||
build_files = [f'{gen}/acados_solver_long.c'] + casadi_model + casadi_cost_y + casadi_cost_e + \
|
||||
casadi_cost_0 + casadi_constraints
|
||||
|
||||
# extra generated files used to trigger a rebuild
|
||||
generated_files = [
|
||||
f'{gen}/Makefile',
|
||||
|
||||
f'{gen}/main_long.c',
|
||||
f'{gen}/main_sim_long.c',
|
||||
f'{gen}/acados_solver_long.h',
|
||||
f'{gen}/acados_sim_solver_long.h',
|
||||
f'{gen}/acados_sim_solver_long.c',
|
||||
f'{gen}/acados_solver.pxd',
|
||||
|
||||
f'{gen}/long_model/long_expl_vde_adj.c',
|
||||
|
||||
f'{gen}/long_model/long_model.h',
|
||||
f'{gen}/long_constraints/long_constraints.h',
|
||||
f'{gen}/long_cost/long_cost.h',
|
||||
] + build_files
|
||||
|
||||
acados_dir = '#third_party/acados'
|
||||
acados_templates_dir = '#third_party/acados/acados_template/c_templates_tera'
|
||||
|
||||
source_list = ['long_mpc.py',
|
||||
'#selfdrive/modeld/constants.py',
|
||||
f'{acados_dir}/include/acados_c/ocp_nlp_interface.h',
|
||||
f'{acados_templates_dir}/acados_solver.in.c',
|
||||
]
|
||||
|
||||
lenv = env.Clone()
|
||||
lenv.Clean(generated_files, Dir(gen))
|
||||
|
||||
generated_long = lenv.Command(generated_files,
|
||||
source_list,
|
||||
f"cd {Dir('.').abspath} && python3 long_mpc.py")
|
||||
lenv.Depends(generated_long, [messaging_python, common_python])
|
||||
|
||||
lenv["CFLAGS"].append("-DACADOS_WITH_QPOASES")
|
||||
lenv["CXXFLAGS"].append("-DACADOS_WITH_QPOASES")
|
||||
lenv["CCFLAGS"].append("-Wno-unused")
|
||||
if arch != "Darwin":
|
||||
lenv["LINKFLAGS"].append("-Wl,--disable-new-dtags")
|
||||
lib_solver = lenv.SharedLibrary(f"{gen}/acados_ocp_solver_long",
|
||||
build_files,
|
||||
LIBS=['m', 'acados', 'hpipm', 'blasfeo', 'qpOASES_e'])
|
||||
|
||||
# generate cython stuff
|
||||
acados_ocp_solver_pyx = File("#third_party/acados/acados_template/acados_ocp_solver_pyx.pyx")
|
||||
acados_ocp_solver_common = File("#third_party/acados/acados_template/acados_solver_common.pxd")
|
||||
libacados_ocp_solver_pxd = File(f'{gen}/acados_solver.pxd')
|
||||
libacados_ocp_solver_c = File(f'{gen}/acados_ocp_solver_pyx.c')
|
||||
|
||||
lenv2 = envCython.Clone()
|
||||
lenv2["LINKFLAGS"] += [lib_solver[0].get_labspath()]
|
||||
lenv2.Command(libacados_ocp_solver_c,
|
||||
[acados_ocp_solver_pyx, acados_ocp_solver_common, libacados_ocp_solver_pxd],
|
||||
f'cython' + \
|
||||
f' -o {libacados_ocp_solver_c.get_labspath()}' + \
|
||||
f' -I {libacados_ocp_solver_pxd.get_dir().get_labspath()}' + \
|
||||
f' -I {acados_ocp_solver_common.get_dir().get_labspath()}' + \
|
||||
f' {acados_ocp_solver_pyx.get_labspath()}')
|
||||
lib_cython = lenv2.Program(f'{gen}/acados_ocp_solver_pyx.so', [libacados_ocp_solver_c])
|
||||
lenv2.Depends(lib_cython, lib_solver)
|
||||
459
selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
Executable file
459
selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
Executable file
@@ -0,0 +1,459 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
from cereal import log
|
||||
from openpilot.common.numpy_fast import clip
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
# WARNING: imports outside of constants will not trigger a rebuild
|
||||
from openpilot.selfdrive.modeld.constants import index_function
|
||||
from openpilot.selfdrive.car.interfaces import ACCEL_MIN
|
||||
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
|
||||
|
||||
if __name__ == '__main__': # generating code
|
||||
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
|
||||
else:
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
|
||||
|
||||
from casadi import SX, vertcat
|
||||
|
||||
MODEL_NAME = 'long'
|
||||
LONG_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
EXPORT_DIR = os.path.join(LONG_MPC_DIR, "c_generated_code")
|
||||
JSON_FILE = os.path.join(LONG_MPC_DIR, "acados_ocp_long.json")
|
||||
|
||||
SOURCES = ['lead0', 'lead1', 'cruise', 'e2e']
|
||||
|
||||
X_DIM = 3
|
||||
U_DIM = 1
|
||||
PARAM_DIM = 6
|
||||
COST_E_DIM = 5
|
||||
COST_DIM = COST_E_DIM + 1
|
||||
CONSTR_DIM = 4
|
||||
|
||||
X_EGO_OBSTACLE_COST = 3.
|
||||
X_EGO_COST = 0.
|
||||
V_EGO_COST = 0.
|
||||
A_EGO_COST = 0.
|
||||
J_EGO_COST = 5.0
|
||||
A_CHANGE_COST = 200.
|
||||
DANGER_ZONE_COST = 100.
|
||||
CRASH_DISTANCE = .25
|
||||
LEAD_DANGER_FACTOR = 0.75
|
||||
LIMIT_COST = 1e6
|
||||
ACADOS_SOLVER_TYPE = 'SQP_RTI'
|
||||
|
||||
|
||||
# Fewer timestamps don't hurt performance and lead to
|
||||
# much better convergence of the MPC with low iterations
|
||||
N = 12
|
||||
MAX_T = 10.0
|
||||
T_IDXS_LST = [index_function(idx, max_val=MAX_T, max_idx=N) for idx in range(N+1)]
|
||||
|
||||
T_IDXS = np.array(T_IDXS_LST)
|
||||
FCW_IDXS = T_IDXS < 5.0
|
||||
T_DIFFS = np.diff(T_IDXS, prepend=[0.])
|
||||
COMFORT_BRAKE = 2.5
|
||||
STOP_DISTANCE = 6.0
|
||||
|
||||
def get_jerk_factor(personality=log.LongitudinalPersonality.standard):
|
||||
if personality==log.LongitudinalPersonality.relaxed:
|
||||
return 1.0
|
||||
elif personality==log.LongitudinalPersonality.standard:
|
||||
return 1.0
|
||||
elif personality==log.LongitudinalPersonality.aggressive:
|
||||
return 0.5
|
||||
else:
|
||||
raise NotImplementedError("Longitudinal personality not supported")
|
||||
|
||||
|
||||
def get_T_FOLLOW(personality=log.LongitudinalPersonality.standard):
|
||||
if personality==log.LongitudinalPersonality.relaxed:
|
||||
return 1.75
|
||||
elif personality==log.LongitudinalPersonality.standard:
|
||||
return 1.45
|
||||
elif personality==log.LongitudinalPersonality.aggressive:
|
||||
return 1.25
|
||||
else:
|
||||
raise NotImplementedError("Longitudinal personality not supported")
|
||||
|
||||
def get_stopped_equivalence_factor(v_lead):
|
||||
return (v_lead**2) / (2 * COMFORT_BRAKE)
|
||||
|
||||
def get_safe_obstacle_distance(v_ego, t_follow):
|
||||
return (v_ego**2) / (2 * COMFORT_BRAKE) + t_follow * v_ego + STOP_DISTANCE
|
||||
|
||||
def desired_follow_distance(v_ego, v_lead, t_follow=None):
|
||||
if t_follow is None:
|
||||
t_follow = get_T_FOLLOW()
|
||||
return get_safe_obstacle_distance(v_ego, t_follow) - get_stopped_equivalence_factor(v_lead)
|
||||
|
||||
|
||||
def gen_long_model():
|
||||
model = AcadosModel()
|
||||
model.name = MODEL_NAME
|
||||
|
||||
# set up states & controls
|
||||
x_ego = SX.sym('x_ego')
|
||||
v_ego = SX.sym('v_ego')
|
||||
a_ego = SX.sym('a_ego')
|
||||
model.x = vertcat(x_ego, v_ego, a_ego)
|
||||
|
||||
# controls
|
||||
j_ego = SX.sym('j_ego')
|
||||
model.u = vertcat(j_ego)
|
||||
|
||||
# xdot
|
||||
x_ego_dot = SX.sym('x_ego_dot')
|
||||
v_ego_dot = SX.sym('v_ego_dot')
|
||||
a_ego_dot = SX.sym('a_ego_dot')
|
||||
model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot)
|
||||
|
||||
# live parameters
|
||||
a_min = SX.sym('a_min')
|
||||
a_max = SX.sym('a_max')
|
||||
x_obstacle = SX.sym('x_obstacle')
|
||||
prev_a = SX.sym('prev_a')
|
||||
lead_t_follow = SX.sym('lead_t_follow')
|
||||
lead_danger_factor = SX.sym('lead_danger_factor')
|
||||
model.p = vertcat(a_min, a_max, x_obstacle, prev_a, lead_t_follow, lead_danger_factor)
|
||||
|
||||
# dynamics model
|
||||
f_expl = vertcat(v_ego, a_ego, j_ego)
|
||||
model.f_impl_expr = model.xdot - f_expl
|
||||
model.f_expl_expr = f_expl
|
||||
return model
|
||||
|
||||
|
||||
def gen_long_ocp():
|
||||
ocp = AcadosOcp()
|
||||
ocp.model = gen_long_model()
|
||||
|
||||
Tf = T_IDXS[-1]
|
||||
|
||||
# set dimensions
|
||||
ocp.dims.N = N
|
||||
|
||||
# set cost module
|
||||
ocp.cost.cost_type = 'NONLINEAR_LS'
|
||||
ocp.cost.cost_type_e = 'NONLINEAR_LS'
|
||||
|
||||
QR = np.zeros((COST_DIM, COST_DIM))
|
||||
Q = np.zeros((COST_E_DIM, COST_E_DIM))
|
||||
|
||||
ocp.cost.W = QR
|
||||
ocp.cost.W_e = Q
|
||||
|
||||
x_ego, v_ego, a_ego = ocp.model.x[0], ocp.model.x[1], ocp.model.x[2]
|
||||
j_ego = ocp.model.u[0]
|
||||
|
||||
a_min, a_max = ocp.model.p[0], ocp.model.p[1]
|
||||
x_obstacle = ocp.model.p[2]
|
||||
prev_a = ocp.model.p[3]
|
||||
lead_t_follow = ocp.model.p[4]
|
||||
lead_danger_factor = ocp.model.p[5]
|
||||
|
||||
ocp.cost.yref = np.zeros((COST_DIM, ))
|
||||
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
|
||||
|
||||
desired_dist_comfort = get_safe_obstacle_distance(v_ego, lead_t_follow)
|
||||
|
||||
# The main cost in normal operation is how close you are to the "desired" distance
|
||||
# from an obstacle at every timestep. This obstacle can be a lead car
|
||||
# or other object. In e2e mode we can use x_position targets as a cost
|
||||
# instead.
|
||||
costs = [((x_obstacle - x_ego) - (desired_dist_comfort)) / (v_ego + 10.),
|
||||
x_ego,
|
||||
v_ego,
|
||||
a_ego,
|
||||
a_ego - prev_a,
|
||||
j_ego]
|
||||
ocp.model.cost_y_expr = vertcat(*costs)
|
||||
ocp.model.cost_y_expr_e = vertcat(*costs[:-1])
|
||||
|
||||
# Constraints on speed, acceleration and desired distance to
|
||||
# the obstacle, which is treated as a slack constraint so it
|
||||
# behaves like an asymmetrical cost.
|
||||
constraints = vertcat(v_ego,
|
||||
(a_ego - a_min),
|
||||
(a_max - a_ego),
|
||||
((x_obstacle - x_ego) - lead_danger_factor * (desired_dist_comfort)) / (v_ego + 10.))
|
||||
ocp.model.con_h_expr = constraints
|
||||
|
||||
x0 = np.zeros(X_DIM)
|
||||
ocp.constraints.x0 = x0
|
||||
ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0, get_T_FOLLOW(), LEAD_DANGER_FACTOR])
|
||||
|
||||
|
||||
# We put all constraint cost weights to 0 and only set them at runtime
|
||||
cost_weights = np.zeros(CONSTR_DIM)
|
||||
ocp.cost.zl = cost_weights
|
||||
ocp.cost.Zl = cost_weights
|
||||
ocp.cost.Zu = cost_weights
|
||||
ocp.cost.zu = cost_weights
|
||||
|
||||
ocp.constraints.lh = np.zeros(CONSTR_DIM)
|
||||
ocp.constraints.uh = 1e4*np.ones(CONSTR_DIM)
|
||||
ocp.constraints.idxsh = np.arange(CONSTR_DIM)
|
||||
|
||||
# The HPIPM solver can give decent solutions even when it is stopped early
|
||||
# Which is critical for our purpose where compute time is strictly bounded
|
||||
# We use HPIPM in the SPEED_ABS mode, which ensures fastest runtime. This
|
||||
# does not cause issues since the problem is well bounded.
|
||||
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
|
||||
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
|
||||
ocp.solver_options.integrator_type = 'ERK'
|
||||
ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE
|
||||
ocp.solver_options.qp_solver_cond_N = 1
|
||||
|
||||
# More iterations take too much time and less lead to inaccurate convergence in
|
||||
# some situations. Ideally we would run just 1 iteration to ensure fixed runtime.
|
||||
ocp.solver_options.qp_solver_iter_max = 10
|
||||
ocp.solver_options.qp_tol = 1e-3
|
||||
|
||||
# set prediction horizon
|
||||
ocp.solver_options.tf = Tf
|
||||
ocp.solver_options.shooting_nodes = T_IDXS
|
||||
|
||||
ocp.code_export_directory = EXPORT_DIR
|
||||
return ocp
|
||||
|
||||
|
||||
class LongitudinalMpc:
|
||||
def __init__(self, mode='acc'):
|
||||
self.mode = mode
|
||||
self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
|
||||
self.reset()
|
||||
self.source = SOURCES[2]
|
||||
|
||||
def reset(self):
|
||||
# self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
|
||||
self.solver.reset()
|
||||
# self.solver.options_set('print_level', 2)
|
||||
self.v_solution = np.zeros(N+1)
|
||||
self.a_solution = np.zeros(N+1)
|
||||
self.prev_a = np.array(self.a_solution)
|
||||
self.j_solution = np.zeros(N)
|
||||
self.yref = np.zeros((N+1, COST_DIM))
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, "yref", self.yref[i])
|
||||
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
|
||||
self.x_sol = np.zeros((N+1, X_DIM))
|
||||
self.u_sol = np.zeros((N,1))
|
||||
self.params = np.zeros((N+1, PARAM_DIM))
|
||||
for i in range(N+1):
|
||||
self.solver.set(i, 'x', np.zeros(X_DIM))
|
||||
self.last_cloudlog_t = 0
|
||||
self.status = False
|
||||
self.crash_cnt = 0.0
|
||||
self.solution_status = 0
|
||||
# timers
|
||||
self.solve_time = 0.0
|
||||
self.time_qp_solution = 0.0
|
||||
self.time_linearization = 0.0
|
||||
self.time_integrator = 0.0
|
||||
self.x0 = np.zeros(X_DIM)
|
||||
self.set_weights()
|
||||
|
||||
def set_cost_weights(self, cost_weights, constraint_cost_weights):
|
||||
W = np.asfortranarray(np.diag(cost_weights))
|
||||
for i in range(N):
|
||||
# TODO don't hardcode A_CHANGE_COST idx
|
||||
# reduce the cost on (a-a_prev) later in the horizon.
|
||||
W[4,4] = cost_weights[4] * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0])
|
||||
self.solver.cost_set(i, 'W', W)
|
||||
# Setting the slice without the copy make the array not contiguous,
|
||||
# causing issues with the C interface.
|
||||
self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))
|
||||
|
||||
# Set L2 slack cost on lower bound constraints
|
||||
Zl = np.array(constraint_cost_weights)
|
||||
for i in range(N):
|
||||
self.solver.cost_set(i, 'Zl', Zl)
|
||||
|
||||
def set_weights(self, prev_accel_constraint=True, personality=log.LongitudinalPersonality.standard):
|
||||
jerk_factor = get_jerk_factor(personality)
|
||||
if self.mode == 'acc':
|
||||
a_change_cost = A_CHANGE_COST if prev_accel_constraint else 0
|
||||
cost_weights = [X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, jerk_factor * a_change_cost, jerk_factor * J_EGO_COST]
|
||||
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST]
|
||||
elif self.mode == 'blended':
|
||||
a_change_cost = 40.0 if prev_accel_constraint else 0
|
||||
cost_weights = [0., 0.1, 0.2, 5.0, a_change_cost, 1.0]
|
||||
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, 50.0]
|
||||
else:
|
||||
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner cost set')
|
||||
self.set_cost_weights(cost_weights, constraint_cost_weights)
|
||||
|
||||
def set_cur_state(self, v, a):
|
||||
v_prev = self.x0[1]
|
||||
self.x0[1] = v
|
||||
self.x0[2] = a
|
||||
if abs(v_prev - v) > 2.: # probably only helps if v < v_prev
|
||||
for i in range(N+1):
|
||||
self.solver.set(i, 'x', self.x0)
|
||||
|
||||
@staticmethod
|
||||
def extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau):
|
||||
a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2)/2.)
|
||||
v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0, 1e8)
|
||||
x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj)
|
||||
lead_xv = np.column_stack((x_lead_traj, v_lead_traj))
|
||||
return lead_xv
|
||||
|
||||
def process_lead(self, lead):
|
||||
v_ego = self.x0[1]
|
||||
if lead is not None and lead.status:
|
||||
x_lead = lead.dRel
|
||||
v_lead = lead.vLead
|
||||
a_lead = lead.aLeadK
|
||||
a_lead_tau = lead.aLeadTau
|
||||
else:
|
||||
# Fake a fast lead car, so mpc can keep running in the same mode
|
||||
x_lead = 50.0
|
||||
v_lead = v_ego + 10.0
|
||||
a_lead = 0.0
|
||||
a_lead_tau = _LEAD_ACCEL_TAU
|
||||
|
||||
# MPC will not converge if immediate crash is expected
|
||||
# Clip lead distance to what is still possible to brake for
|
||||
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-ACCEL_MIN * 2)
|
||||
x_lead = clip(x_lead, min_x_lead, 1e8)
|
||||
v_lead = clip(v_lead, 0.0, 1e8)
|
||||
a_lead = clip(a_lead, -10., 5.)
|
||||
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau)
|
||||
return lead_xv
|
||||
|
||||
def set_accel_limits(self, min_a, max_a):
|
||||
# TODO this sets a max accel limit, but the minimum limit is only for cruise decel
|
||||
# needs refactor
|
||||
self.cruise_min_a = min_a
|
||||
self.max_a = max_a
|
||||
|
||||
def update(self, radarstate, v_cruise, x, v, a, j, personality=log.LongitudinalPersonality.standard):
|
||||
t_follow = get_T_FOLLOW(personality)
|
||||
v_ego = self.x0[1]
|
||||
self.status = radarstate.leadOne.status or radarstate.leadTwo.status
|
||||
|
||||
lead_xv_0 = self.process_lead(radarstate.leadOne)
|
||||
lead_xv_1 = self.process_lead(radarstate.leadTwo)
|
||||
|
||||
# To estimate a safe distance from a moving lead, we calculate how much stopping
|
||||
# distance that lead needs as a minimum. We can add that to the current distance
|
||||
# and then treat that as a stopped car/obstacle at this new distance.
|
||||
lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1])
|
||||
lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1])
|
||||
|
||||
self.params[:,0] = ACCEL_MIN
|
||||
self.params[:,1] = self.max_a
|
||||
|
||||
# Update in ACC mode or ACC/e2e blend
|
||||
if self.mode == 'acc':
|
||||
self.params[:,5] = LEAD_DANGER_FACTOR
|
||||
|
||||
# Fake an obstacle for cruise, this ensures smooth acceleration to set speed
|
||||
# when the leads are no factor.
|
||||
v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05)
|
||||
v_upper = v_ego + (T_IDXS * self.max_a * 1.05)
|
||||
v_cruise_clipped = np.clip(v_cruise * np.ones(N+1),
|
||||
v_lower,
|
||||
v_upper)
|
||||
cruise_obstacle = np.cumsum(T_DIFFS * v_cruise_clipped) + get_safe_obstacle_distance(v_cruise_clipped, t_follow)
|
||||
x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle])
|
||||
self.source = SOURCES[np.argmin(x_obstacles[0])]
|
||||
|
||||
# These are not used in ACC mode
|
||||
x[:], v[:], a[:], j[:] = 0.0, 0.0, 0.0, 0.0
|
||||
|
||||
elif self.mode == 'blended':
|
||||
self.params[:,5] = 1.0
|
||||
|
||||
x_obstacles = np.column_stack([lead_0_obstacle,
|
||||
lead_1_obstacle])
|
||||
cruise_target = T_IDXS * np.clip(v_cruise, v_ego - 2.0, 1e3) + x[0]
|
||||
xforward = ((v[1:] + v[:-1]) / 2) * (T_IDXS[1:] - T_IDXS[:-1])
|
||||
x = np.cumsum(np.insert(xforward, 0, x[0]))
|
||||
|
||||
x_and_cruise = np.column_stack([x, cruise_target])
|
||||
x = np.min(x_and_cruise, axis=1)
|
||||
|
||||
self.source = 'e2e' if x_and_cruise[1,0] < x_and_cruise[1,1] else 'cruise'
|
||||
|
||||
else:
|
||||
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner update')
|
||||
|
||||
self.yref[:,1] = x
|
||||
self.yref[:,2] = v
|
||||
self.yref[:,3] = a
|
||||
self.yref[:,5] = j
|
||||
for i in range(N):
|
||||
self.solver.set(i, "yref", self.yref[i])
|
||||
self.solver.set(N, "yref", self.yref[N][:COST_E_DIM])
|
||||
|
||||
self.params[:,2] = np.min(x_obstacles, axis=1)
|
||||
self.params[:,3] = np.copy(self.prev_a)
|
||||
self.params[:,4] = t_follow
|
||||
|
||||
self.run()
|
||||
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and
|
||||
radarstate.leadOne.modelProb > 0.9):
|
||||
self.crash_cnt += 1
|
||||
else:
|
||||
self.crash_cnt = 0
|
||||
|
||||
# Check if it got within lead comfort range
|
||||
# TODO This should be done cleaner
|
||||
if self.mode == 'blended':
|
||||
if any((lead_0_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow))- self.x_sol[:,0] < 0.0):
|
||||
self.source = 'lead0'
|
||||
if any((lead_1_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow))- self.x_sol[:,0] < 0.0) and \
|
||||
(lead_1_obstacle[0] - lead_0_obstacle[0]):
|
||||
self.source = 'lead1'
|
||||
|
||||
def run(self):
|
||||
# t0 = time.monotonic()
|
||||
# reset = 0
|
||||
for i in range(N+1):
|
||||
self.solver.set(i, 'p', self.params[i])
|
||||
self.solver.constraints_set(0, "lbx", self.x0)
|
||||
self.solver.constraints_set(0, "ubx", self.x0)
|
||||
|
||||
self.solution_status = self.solver.solve()
|
||||
self.solve_time = float(self.solver.get_stats('time_tot')[0])
|
||||
self.time_qp_solution = float(self.solver.get_stats('time_qp')[0])
|
||||
self.time_linearization = float(self.solver.get_stats('time_lin')[0])
|
||||
self.time_integrator = float(self.solver.get_stats('time_sim')[0])
|
||||
|
||||
# qp_iter = self.solver.get_stats('statistics')[-1][-1] # SQP_RTI specific
|
||||
# print(f"long_mpc timings: tot {self.solve_time:.2e}, qp {self.time_qp_solution:.2e}, lin {self.time_linearization:.2e}, \
|
||||
# integrator {self.time_integrator:.2e}, qp_iter {qp_iter}")
|
||||
# res = self.solver.get_residuals()
|
||||
# print(f"long_mpc residuals: {res[0]:.2e}, {res[1]:.2e}, {res[2]:.2e}, {res[3]:.2e}")
|
||||
# self.solver.print_statistics()
|
||||
|
||||
for i in range(N+1):
|
||||
self.x_sol[i] = self.solver.get(i, 'x')
|
||||
for i in range(N):
|
||||
self.u_sol[i] = self.solver.get(i, 'u')
|
||||
|
||||
self.v_solution = self.x_sol[:,1]
|
||||
self.a_solution = self.x_sol[:,2]
|
||||
self.j_solution = self.u_sol[:,0]
|
||||
|
||||
self.prev_a = np.interp(T_IDXS + 0.05, T_IDXS, self.a_solution)
|
||||
|
||||
t = time.monotonic()
|
||||
if self.solution_status != 0:
|
||||
if t > self.last_cloudlog_t + 5.0:
|
||||
self.last_cloudlog_t = t
|
||||
cloudlog.warning(f"Long mpc reset, solution_status: {self.solution_status}")
|
||||
self.reset()
|
||||
# reset = 1
|
||||
# print(f"long_mpc timings: total internal {self.solve_time:.2e}, external: {(time.monotonic() - t0):.2e} qp {self.time_qp_solution:.2e}, \
|
||||
# lin {self.time_linearization:.2e} qp_iter {qp_iter}, reset {reset}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ocp = gen_long_ocp()
|
||||
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE)
|
||||
# AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
|
||||
175
selfdrive/controls/lib/longitudinal_planner.py
Executable file
175
selfdrive/controls/lib/longitudinal_planner.py
Executable file
@@ -0,0 +1,175 @@
|
||||
#!/usr/bin/env python3
|
||||
import math
|
||||
import numpy as np
|
||||
from openpilot.common.numpy_fast import clip, interp
|
||||
from openpilot.common.params import Params
|
||||
from cereal import log
|
||||
|
||||
import cereal.messaging as messaging
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.filter_simple import FirstOrderFilter
|
||||
from openpilot.common.realtime import DT_MDL
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
|
||||
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N, get_speed_error
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
|
||||
LON_MPC_STEP = 0.2 # first step is 0.2s
|
||||
A_CRUISE_MIN = -1.2
|
||||
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
|
||||
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
|
||||
|
||||
# Lookup table for turns
|
||||
_A_TOTAL_MAX_V = [1.7, 3.2]
|
||||
_A_TOTAL_MAX_BP = [20., 40.]
|
||||
|
||||
|
||||
def get_max_accel(v_ego):
|
||||
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
|
||||
|
||||
|
||||
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
|
||||
"""
|
||||
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
|
||||
this should avoid accelerating when losing the target in turns
|
||||
"""
|
||||
|
||||
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
|
||||
# The lookup table for turns should also be updated if we do this
|
||||
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
|
||||
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
|
||||
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
|
||||
|
||||
return [a_target[0], min(a_target[1], a_x_allowed)]
|
||||
|
||||
|
||||
class LongitudinalPlanner:
|
||||
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
|
||||
self.CP = CP
|
||||
self.mpc = LongitudinalMpc()
|
||||
self.fcw = False
|
||||
self.dt = dt
|
||||
|
||||
self.a_desired = init_a
|
||||
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
|
||||
self.v_model_error = 0.0
|
||||
|
||||
self.v_desired_trajectory = np.zeros(CONTROL_N)
|
||||
self.a_desired_trajectory = np.zeros(CONTROL_N)
|
||||
self.j_desired_trajectory = np.zeros(CONTROL_N)
|
||||
self.solverExecutionTime = 0.0
|
||||
self.params = Params()
|
||||
self.param_read_counter = 0
|
||||
self.read_param()
|
||||
self.personality = log.LongitudinalPersonality.standard
|
||||
|
||||
def read_param(self):
|
||||
try:
|
||||
self.personality = int(self.params.get('LongitudinalPersonality'))
|
||||
except (ValueError, TypeError):
|
||||
self.personality = log.LongitudinalPersonality.standard
|
||||
|
||||
@staticmethod
|
||||
def parse_model(model_msg, model_error):
|
||||
if (len(model_msg.position.x) == 33 and
|
||||
len(model_msg.velocity.x) == 33 and
|
||||
len(model_msg.acceleration.x) == 33):
|
||||
x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
|
||||
v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error
|
||||
a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
|
||||
j = np.zeros(len(T_IDXS_MPC))
|
||||
else:
|
||||
x = np.zeros(len(T_IDXS_MPC))
|
||||
v = np.zeros(len(T_IDXS_MPC))
|
||||
a = np.zeros(len(T_IDXS_MPC))
|
||||
j = np.zeros(len(T_IDXS_MPC))
|
||||
return x, v, a, j
|
||||
|
||||
def update(self, sm):
|
||||
if self.param_read_counter % 50 == 0:
|
||||
self.read_param()
|
||||
self.param_read_counter += 1
|
||||
self.mpc.mode = 'blended' if sm['controlsState'].experimentalMode else 'acc'
|
||||
|
||||
v_ego = sm['carState'].vEgo
|
||||
v_cruise_kph = min(sm['controlsState'].vCruise, V_CRUISE_MAX)
|
||||
v_cruise = v_cruise_kph * CV.KPH_TO_MS
|
||||
|
||||
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
|
||||
force_slow_decel = sm['controlsState'].forceDecel
|
||||
|
||||
# Reset current state when not engaged, or user is controlling the speed
|
||||
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled
|
||||
|
||||
# No change cost when user is controlling the speed, or when standstill
|
||||
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
|
||||
|
||||
if self.mpc.mode == 'acc':
|
||||
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
|
||||
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
|
||||
else:
|
||||
accel_limits = [ACCEL_MIN, ACCEL_MAX]
|
||||
accel_limits_turns = [ACCEL_MIN, ACCEL_MAX]
|
||||
|
||||
if reset_state:
|
||||
self.v_desired_filter.x = v_ego
|
||||
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
|
||||
self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
|
||||
|
||||
# Prevent divergence, smooth in current v_ego
|
||||
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
|
||||
# Compute model v_ego error
|
||||
self.v_model_error = get_speed_error(sm['modelV2'], v_ego)
|
||||
|
||||
if force_slow_decel:
|
||||
v_cruise = 0.0
|
||||
# clip limits, cannot init MPC outside of bounds
|
||||
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
|
||||
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
|
||||
|
||||
self.mpc.set_weights(prev_accel_constraint, personality=self.personality)
|
||||
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
|
||||
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
|
||||
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error)
|
||||
self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=self.personality)
|
||||
|
||||
self.v_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
|
||||
self.a_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.a_solution)
|
||||
self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N]
|
||||
self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N]
|
||||
self.j_desired_trajectory = np.interp(ModelConstants.T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
|
||||
|
||||
# TODO counter is only needed because radar is glitchy, remove once radar is gone
|
||||
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
|
||||
if self.fcw:
|
||||
cloudlog.info("FCW triggered")
|
||||
|
||||
# Interpolate 0.05 seconds and save as starting point for next iteration
|
||||
a_prev = self.a_desired
|
||||
self.a_desired = float(interp(self.dt, ModelConstants.T_IDXS[:CONTROL_N], self.a_desired_trajectory))
|
||||
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
|
||||
|
||||
def publish(self, sm, pm):
|
||||
plan_send = messaging.new_message('longitudinalPlan')
|
||||
|
||||
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
|
||||
|
||||
longitudinalPlan = plan_send.longitudinalPlan
|
||||
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
||||
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
|
||||
|
||||
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
|
||||
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
|
||||
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
|
||||
|
||||
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
|
||||
longitudinalPlan.longitudinalPlanSource = self.mpc.source
|
||||
longitudinalPlan.fcw = self.fcw
|
||||
|
||||
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
|
||||
longitudinalPlan.personality = self.personality
|
||||
|
||||
pm.send('longitudinalPlan', plan_send)
|
||||
75
selfdrive/controls/lib/pid.py
Normal file
75
selfdrive/controls/lib/pid.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import numpy as np
|
||||
from numbers import Number
|
||||
|
||||
from openpilot.common.numpy_fast import clip, interp
|
||||
|
||||
|
||||
class PIDController():
|
||||
def __init__(self, k_p, k_i, k_f=0., k_d=0., pos_limit=1e308, neg_limit=-1e308, rate=100):
|
||||
self._k_p = k_p
|
||||
self._k_i = k_i
|
||||
self._k_d = k_d
|
||||
self.k_f = k_f # feedforward gain
|
||||
if isinstance(self._k_p, Number):
|
||||
self._k_p = [[0], [self._k_p]]
|
||||
if isinstance(self._k_i, Number):
|
||||
self._k_i = [[0], [self._k_i]]
|
||||
if isinstance(self._k_d, Number):
|
||||
self._k_d = [[0], [self._k_d]]
|
||||
|
||||
self.pos_limit = pos_limit
|
||||
self.neg_limit = neg_limit
|
||||
|
||||
self.i_unwind_rate = 0.3 / rate
|
||||
self.i_rate = 1.0 / rate
|
||||
self.speed = 0.0
|
||||
|
||||
self.reset()
|
||||
|
||||
@property
|
||||
def k_p(self):
|
||||
return interp(self.speed, self._k_p[0], self._k_p[1])
|
||||
|
||||
@property
|
||||
def k_i(self):
|
||||
return interp(self.speed, self._k_i[0], self._k_i[1])
|
||||
|
||||
@property
|
||||
def k_d(self):
|
||||
return interp(self.speed, self._k_d[0], self._k_d[1])
|
||||
|
||||
@property
|
||||
def error_integral(self):
|
||||
return self.i/self.k_i
|
||||
|
||||
def reset(self):
|
||||
self.p = 0.0
|
||||
self.i = 0.0
|
||||
self.d = 0.0
|
||||
self.f = 0.0
|
||||
self.control = 0
|
||||
|
||||
def update(self, error, error_rate=0.0, speed=0.0, override=False, feedforward=0., freeze_integrator=False):
|
||||
self.speed = speed
|
||||
|
||||
self.p = float(error) * self.k_p
|
||||
self.f = feedforward * self.k_f
|
||||
self.d = error_rate * self.k_d
|
||||
|
||||
if override:
|
||||
self.i -= self.i_unwind_rate * float(np.sign(self.i))
|
||||
else:
|
||||
i = self.i + error * self.k_i * self.i_rate
|
||||
control = self.p + i + self.d + self.f
|
||||
|
||||
# Update when changing i will move the control away from the limits
|
||||
# or when i will move towards the sign of the error
|
||||
if ((error >= 0 and (control <= self.pos_limit or i < 0.0)) or
|
||||
(error <= 0 and (control >= self.neg_limit or i > 0.0))) and \
|
||||
not freeze_integrator:
|
||||
self.i = i
|
||||
|
||||
control = self.p + self.i + self.d + self.f
|
||||
|
||||
self.control = clip(control, self.neg_limit, self.pos_limit)
|
||||
return self.control
|
||||
231
selfdrive/controls/lib/vehicle_model.py
Executable file
231
selfdrive/controls/lib/vehicle_model.py
Executable file
@@ -0,0 +1,231 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Dynamic bicycle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani"
|
||||
|
||||
The state is x = [v, r]^T
|
||||
with v lateral speed [m/s], and r rotational speed [rad/s]
|
||||
|
||||
The input u is the steering angle [rad], and roll [rad]
|
||||
|
||||
The system is defined by
|
||||
x_dot = A*x + B*u
|
||||
|
||||
A depends on longitudinal speed, u [m/s], and vehicle parameters CP
|
||||
"""
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import solve
|
||||
|
||||
from cereal import car
|
||||
|
||||
ACCELERATION_DUE_TO_GRAVITY = 9.8
|
||||
|
||||
|
||||
class VehicleModel:
|
||||
def __init__(self, CP: car.CarParams):
|
||||
"""
|
||||
Args:
|
||||
CP: Car Parameters
|
||||
"""
|
||||
# for math readability, convert long names car params into short names
|
||||
self.m: float = CP.mass
|
||||
self.j: float = CP.rotationalInertia
|
||||
self.l: float = CP.wheelbase
|
||||
self.aF: float = CP.centerToFront
|
||||
self.aR: float = CP.wheelbase - CP.centerToFront
|
||||
self.chi: float = CP.steerRatioRear
|
||||
|
||||
self.cF_orig: float = CP.tireStiffnessFront
|
||||
self.cR_orig: float = CP.tireStiffnessRear
|
||||
self.update_params(1.0, CP.steerRatio)
|
||||
|
||||
def update_params(self, stiffness_factor: float, steer_ratio: float) -> None:
|
||||
"""Update the vehicle model with a new stiffness factor and steer ratio"""
|
||||
self.cF: float = stiffness_factor * self.cF_orig
|
||||
self.cR: float = stiffness_factor * self.cR_orig
|
||||
self.sR: float = steer_ratio
|
||||
|
||||
def steady_state_sol(self, sa: float, u: float, roll: float) -> np.ndarray:
|
||||
"""Returns the steady state solution.
|
||||
|
||||
If the speed is too low we can't use the dynamic model (tire slip is undefined),
|
||||
we then have to use the kinematic model
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution (lateral speed, rotational speed)
|
||||
"""
|
||||
if u > 0.1:
|
||||
return dyn_ss_sol(sa, u, roll, self)
|
||||
else:
|
||||
return kin_ss_sol(sa, u, self)
|
||||
|
||||
def calc_curvature(self, sa: float, u: float, roll: float) -> float:
|
||||
"""Returns the curvature. Multiplied by the speed this will give the yaw rate.
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Curvature factor [1/m]
|
||||
"""
|
||||
return (self.curvature_factor(u) * sa / self.sR) + self.roll_compensation(roll, u)
|
||||
|
||||
def curvature_factor(self, u: float) -> float:
|
||||
"""Returns the curvature factor.
|
||||
Multiplied by wheel angle (not steering wheel angle) this will give the curvature.
|
||||
|
||||
Args:
|
||||
u: Speed [m/s]
|
||||
|
||||
Returns:
|
||||
Curvature factor [1/m]
|
||||
"""
|
||||
sf = calc_slip_factor(self)
|
||||
return (1. - self.chi) / (1. - sf * u**2) / self.l
|
||||
|
||||
def get_steer_from_curvature(self, curv: float, u: float, roll: float) -> float:
|
||||
"""Calculates the required steering wheel angle for a given curvature
|
||||
|
||||
Args:
|
||||
curv: Desired curvature [1/m]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Steering wheel angle [rad]
|
||||
"""
|
||||
|
||||
return (curv - self.roll_compensation(roll, u)) * self.sR * 1.0 / self.curvature_factor(u)
|
||||
|
||||
def roll_compensation(self, roll: float, u: float) -> float:
|
||||
"""Calculates the roll-compensation to curvature
|
||||
|
||||
Args:
|
||||
roll: Road Roll [rad]
|
||||
u: Speed [m/s]
|
||||
|
||||
Returns:
|
||||
Roll compensation curvature [rad]
|
||||
"""
|
||||
sf = calc_slip_factor(self)
|
||||
|
||||
if abs(sf) < 1e-6:
|
||||
return 0
|
||||
else:
|
||||
return (ACCELERATION_DUE_TO_GRAVITY * roll) / ((1 / sf) - u**2)
|
||||
|
||||
def get_steer_from_yaw_rate(self, yaw_rate: float, u: float, roll: float) -> float:
|
||||
"""Calculates the required steering wheel angle for a given yaw_rate
|
||||
|
||||
Args:
|
||||
yaw_rate: Desired yaw rate [rad/s]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Steering wheel angle [rad]
|
||||
"""
|
||||
curv = yaw_rate / u
|
||||
return self.get_steer_from_curvature(curv, u, roll)
|
||||
|
||||
def yaw_rate(self, sa: float, u: float, roll: float) -> float:
|
||||
"""Calculate yaw rate
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Yaw rate [rad/s]
|
||||
"""
|
||||
return self.calc_curvature(sa, u, roll) * u
|
||||
|
||||
|
||||
def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
|
||||
"""Calculate the steady state solution at low speeds
|
||||
At low speeds the tire slip is undefined, so a kinematic
|
||||
model is used.
|
||||
|
||||
Args:
|
||||
sa: Steering angle [rad]
|
||||
u: Speed [m/s]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution
|
||||
"""
|
||||
K = np.zeros((2, 1))
|
||||
K[0, 0] = VM.aR / VM.sR / VM.l * u
|
||||
K[1, 0] = 1. / VM.sR / VM.l * u
|
||||
return K * sa
|
||||
|
||||
|
||||
def create_dyn_state_matrices(u: float, VM: VehicleModel) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Returns the A and B matrix for the dynamics system
|
||||
|
||||
Args:
|
||||
u: Vehicle speed [m/s]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
A tuple with the 2x2 A matrix, and 2x2 B matrix
|
||||
|
||||
Parameters in the vehicle model:
|
||||
cF: Tire stiffness Front [N/rad]
|
||||
cR: Tire stiffness Front [N/rad]
|
||||
aF: Distance from CG to front wheels [m]
|
||||
aR: Distance from CG to rear wheels [m]
|
||||
m: Mass [kg]
|
||||
j: Rotational inertia [kg m^2]
|
||||
sR: Steering ratio [-]
|
||||
chi: Steer ratio rear [-]
|
||||
"""
|
||||
A = np.zeros((2, 2))
|
||||
B = np.zeros((2, 2))
|
||||
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
|
||||
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
|
||||
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
|
||||
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
|
||||
|
||||
# Steering input
|
||||
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
|
||||
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
|
||||
|
||||
# Roll input
|
||||
B[0, 1] = -ACCELERATION_DUE_TO_GRAVITY
|
||||
|
||||
return A, B
|
||||
|
||||
|
||||
def dyn_ss_sol(sa: float, u: float, roll: float, VM: VehicleModel) -> np.ndarray:
|
||||
"""Calculate the steady state solution when x_dot = 0,
|
||||
Ax + Bu = 0 => x = -A^{-1} B u
|
||||
|
||||
Args:
|
||||
sa: Steering angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution
|
||||
"""
|
||||
A, B = create_dyn_state_matrices(u, VM)
|
||||
inp = np.array([[sa], [roll]])
|
||||
return -solve(A, B) @ inp # type: ignore
|
||||
|
||||
|
||||
def calc_slip_factor(VM: VehicleModel) -> float:
|
||||
"""The slip factor is a measure of how the curvature changes with speed
|
||||
it's positive for Oversteering vehicle, negative (usual case) otherwise.
|
||||
"""
|
||||
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
|
||||
63
selfdrive/controls/plannerd.py
Executable file
63
selfdrive/controls/plannerd.py
Executable file
@@ -0,0 +1,63 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import numpy as np
|
||||
from cereal import car
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.common.realtime import Priority, config_realtime_process
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner
|
||||
from openpilot.selfdrive.controls.lib.lateral_planner import LateralPlanner
|
||||
import cereal.messaging as messaging
|
||||
|
||||
def cumtrapz(x, t):
|
||||
return np.concatenate([[0], np.cumsum(((x[0:-1] + x[1:])/2) * np.diff(t))])
|
||||
|
||||
def publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner):
|
||||
plan_odo = cumtrapz(longitudinal_planner.v_desired_trajectory_full, ModelConstants.T_IDXS)
|
||||
model_odo = cumtrapz(lateral_planner.v_plan, ModelConstants.T_IDXS)
|
||||
|
||||
ui_send = messaging.new_message('uiPlan')
|
||||
ui_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
|
||||
uiPlan = ui_send.uiPlan
|
||||
uiPlan.frameId = sm['modelV2'].frameId
|
||||
uiPlan.position.x = np.interp(plan_odo, model_odo, lateral_planner.x_sol[:,0]).tolist()
|
||||
uiPlan.position.y = np.interp(plan_odo, model_odo, lateral_planner.x_sol[:,1]).tolist()
|
||||
uiPlan.position.z = np.interp(plan_odo, model_odo, lateral_planner.path_xyz[:,2]).tolist()
|
||||
uiPlan.accel = longitudinal_planner.a_desired_trajectory_full.tolist()
|
||||
pm.send('uiPlan', ui_send)
|
||||
|
||||
def plannerd_thread():
|
||||
config_realtime_process(5, Priority.CTRL_LOW)
|
||||
|
||||
cloudlog.info("plannerd is waiting for CarParams")
|
||||
params = Params()
|
||||
with car.CarParams.from_bytes(params.get("CarParams", block=True)) as msg:
|
||||
CP = msg
|
||||
cloudlog.info("plannerd got CarParams: %s", CP.carName)
|
||||
|
||||
debug_mode = bool(int(os.getenv("DEBUG", "0")))
|
||||
|
||||
longitudinal_planner = LongitudinalPlanner(CP)
|
||||
lateral_planner = LateralPlanner(CP, debug=debug_mode)
|
||||
|
||||
pm = messaging.PubMaster(['longitudinalPlan', 'lateralPlan', 'uiPlan'])
|
||||
sm = messaging.SubMaster(['carControl', 'carState', 'controlsState', 'radarState', 'modelV2'],
|
||||
poll=['radarState', 'modelV2'], ignore_avg_freq=['radarState'])
|
||||
|
||||
while True:
|
||||
sm.update()
|
||||
|
||||
if sm.updated['modelV2']:
|
||||
lateral_planner.update(sm)
|
||||
lateral_planner.publish(sm, pm)
|
||||
longitudinal_planner.update(sm)
|
||||
longitudinal_planner.publish(sm, pm)
|
||||
publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner)
|
||||
|
||||
def main():
|
||||
plannerd_thread()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
331
selfdrive/controls/radard.py
Executable file
331
selfdrive/controls/radard.py
Executable file
@@ -0,0 +1,331 @@
|
||||
#!/usr/bin/env python3
|
||||
import importlib
|
||||
import math
|
||||
from collections import deque
|
||||
from typing import Optional, Dict, Any
|
||||
|
||||
import capnp
|
||||
from cereal import messaging, log, car
|
||||
from openpilot.common.numpy_fast import interp
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.common.realtime import Ratekeeper, Priority, config_realtime_process
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
|
||||
from openpilot.common.simple_kalman import KF1D
|
||||
|
||||
|
||||
# Default lead acceleration decay set to 50% at 1s
|
||||
_LEAD_ACCEL_TAU = 1.5
|
||||
|
||||
# radar tracks
|
||||
SPEED, ACCEL = 0, 1 # Kalman filter states enum
|
||||
|
||||
# stationary qualification parameters
|
||||
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
|
||||
|
||||
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
|
||||
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
|
||||
|
||||
|
||||
class KalmanParams:
|
||||
def __init__(self, dt: float):
|
||||
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
|
||||
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
|
||||
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
|
||||
self.A = [[1.0, dt], [0.0, 1.0]]
|
||||
self.C = [1.0, 0.0]
|
||||
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
|
||||
#R = 1e3
|
||||
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
|
||||
dts = [dt * 0.01 for dt in range(1, 21)]
|
||||
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
|
||||
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
|
||||
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
|
||||
0.35353899, 0.36200124]
|
||||
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
|
||||
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
|
||||
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
|
||||
0.26393339, 0.26278425]
|
||||
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
|
||||
|
||||
|
||||
class Track:
|
||||
def __init__(self, identifier: int, v_lead: float, kalman_params: KalmanParams):
|
||||
self.identifier = identifier
|
||||
self.cnt = 0
|
||||
self.aLeadTau = _LEAD_ACCEL_TAU
|
||||
self.K_A = kalman_params.A
|
||||
self.K_C = kalman_params.C
|
||||
self.K_K = kalman_params.K
|
||||
self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
|
||||
|
||||
def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float):
|
||||
# relative values, copy
|
||||
self.dRel = d_rel # LONG_DIST
|
||||
self.yRel = y_rel # -LAT_DIST
|
||||
self.vRel = v_rel # REL_SPEED
|
||||
self.vLead = v_lead
|
||||
self.measured = measured # measured or estimate
|
||||
|
||||
# computed velocity and accelerations
|
||||
if self.cnt > 0:
|
||||
self.kf.update(self.vLead)
|
||||
|
||||
self.vLeadK = float(self.kf.x[SPEED][0])
|
||||
self.aLeadK = float(self.kf.x[ACCEL][0])
|
||||
|
||||
# Learn if constant acceleration
|
||||
if abs(self.aLeadK) < 0.5:
|
||||
self.aLeadTau = _LEAD_ACCEL_TAU
|
||||
else:
|
||||
self.aLeadTau *= 0.9
|
||||
|
||||
self.cnt += 1
|
||||
|
||||
def get_key_for_cluster(self):
|
||||
# Weigh y higher since radar is inaccurate in this dimension
|
||||
return [self.dRel, self.yRel*2, self.vRel]
|
||||
|
||||
def reset_a_lead(self, aLeadK: float, aLeadTau: float):
|
||||
self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
|
||||
self.aLeadK = aLeadK
|
||||
self.aLeadTau = aLeadTau
|
||||
|
||||
def get_RadarState(self, model_prob: float = 0.0):
|
||||
return {
|
||||
"dRel": float(self.dRel),
|
||||
"yRel": float(self.yRel),
|
||||
"vRel": float(self.vRel),
|
||||
"vLead": float(self.vLead),
|
||||
"vLeadK": float(self.vLeadK),
|
||||
"aLeadK": float(self.aLeadK),
|
||||
"aLeadTau": float(self.aLeadTau),
|
||||
"status": True,
|
||||
"fcw": self.is_potential_fcw(model_prob),
|
||||
"modelProb": model_prob,
|
||||
"radar": True,
|
||||
"radarTrackId": self.identifier,
|
||||
}
|
||||
|
||||
def potential_low_speed_lead(self, v_ego: float):
|
||||
# stop for stuff in front of you and low speed, even without model confirmation
|
||||
# Radar points closer than 0.75, are almost always glitches on toyota radars
|
||||
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
|
||||
|
||||
def is_potential_fcw(self, model_prob: float):
|
||||
return model_prob > .9
|
||||
|
||||
def __str__(self):
|
||||
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
|
||||
return ret
|
||||
|
||||
|
||||
def laplacian_pdf(x: float, mu: float, b: float):
|
||||
b = max(b, 1e-4)
|
||||
return math.exp(-abs(x-mu)/b)
|
||||
|
||||
|
||||
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: Dict[int, Track]):
|
||||
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
|
||||
|
||||
def prob(c):
|
||||
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
|
||||
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
|
||||
prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])
|
||||
|
||||
# This is isn't exactly right, but good heuristic
|
||||
return prob_d * prob_y * prob_v
|
||||
|
||||
track = max(tracks.values(), key=prob)
|
||||
|
||||
# if no 'sane' match is found return -1
|
||||
# stationary radar points can be false positives
|
||||
dist_sane = abs(track.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
|
||||
vel_sane = (abs(track.vRel + v_ego - lead.v[0]) < 10) or (v_ego + track.vRel > 3)
|
||||
if dist_sane and vel_sane:
|
||||
return track
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
|
||||
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
|
||||
return {
|
||||
"dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
|
||||
"yRel": float(-lead_msg.y[0]),
|
||||
"vRel": float(lead_v_rel_pred),
|
||||
"vLead": float(v_ego + lead_v_rel_pred),
|
||||
"vLeadK": float(v_ego + lead_v_rel_pred),
|
||||
"aLeadK": 0.0,
|
||||
"aLeadTau": 0.3,
|
||||
"fcw": False,
|
||||
"modelProb": float(lead_msg.prob),
|
||||
"status": True,
|
||||
"radar": False,
|
||||
"radarTrackId": -1,
|
||||
}
|
||||
|
||||
|
||||
def get_lead(v_ego: float, ready: bool, tracks: Dict[int, Track], lead_msg: capnp._DynamicStructReader,
|
||||
model_v_ego: float, low_speed_override: bool = True) -> Dict[str, Any]:
|
||||
# Determine leads, this is where the essential logic happens
|
||||
if len(tracks) > 0 and ready and lead_msg.prob > .5:
|
||||
track = match_vision_to_track(v_ego, lead_msg, tracks)
|
||||
else:
|
||||
track = None
|
||||
|
||||
lead_dict = {'status': False}
|
||||
if track is not None:
|
||||
lead_dict = track.get_RadarState(lead_msg.prob)
|
||||
elif (track is None) and ready and (lead_msg.prob > .5):
|
||||
lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
|
||||
|
||||
if low_speed_override:
|
||||
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
|
||||
if len(low_speed_tracks) > 0:
|
||||
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
|
||||
|
||||
# Only choose new track if it is actually closer than the previous one
|
||||
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
|
||||
lead_dict = closest_track.get_RadarState()
|
||||
|
||||
return lead_dict
|
||||
|
||||
|
||||
class RadarD:
|
||||
def __init__(self, radar_ts: float, delay: int = 0):
|
||||
self.current_time = 0.0
|
||||
|
||||
self.tracks: Dict[int, Track] = {}
|
||||
self.kalman_params = KalmanParams(radar_ts)
|
||||
|
||||
self.v_ego = 0.0
|
||||
self.v_ego_hist = deque([0.0], maxlen=delay+1)
|
||||
|
||||
self.radar_state: Optional[capnp._DynamicStructBuilder] = None
|
||||
self.radar_state_valid = False
|
||||
|
||||
self.ready = False
|
||||
|
||||
def update(self, sm: messaging.SubMaster, rr: Optional[car.RadarData]):
|
||||
self.current_time = 1e-9*max(sm.logMonoTime.values())
|
||||
|
||||
radar_points = []
|
||||
radar_errors = []
|
||||
if rr is not None:
|
||||
radar_points = rr.points
|
||||
radar_errors = rr.errors
|
||||
|
||||
if sm.updated['carState']:
|
||||
self.v_ego = sm['carState'].vEgo
|
||||
self.v_ego_hist.append(self.v_ego)
|
||||
if sm.updated['modelV2']:
|
||||
self.ready = True
|
||||
|
||||
ar_pts = {}
|
||||
for pt in radar_points:
|
||||
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
|
||||
|
||||
# *** remove missing points from meta data ***
|
||||
for ids in list(self.tracks.keys()):
|
||||
if ids not in ar_pts:
|
||||
self.tracks.pop(ids, None)
|
||||
|
||||
# *** compute the tracks ***
|
||||
for ids in ar_pts:
|
||||
rpt = ar_pts[ids]
|
||||
|
||||
# align v_ego by a fixed time to align it with the radar measurement
|
||||
v_lead = rpt[2] + self.v_ego_hist[0]
|
||||
|
||||
# create the track if it doesn't exist or it's a new track
|
||||
if ids not in self.tracks:
|
||||
self.tracks[ids] = Track(ids, v_lead, self.kalman_params)
|
||||
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
|
||||
|
||||
# *** publish radarState ***
|
||||
self.radar_state_valid = sm.all_checks() and len(radar_errors) == 0
|
||||
self.radar_state = log.RadarState.new_message()
|
||||
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
|
||||
self.radar_state.radarErrors = list(radar_errors)
|
||||
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
|
||||
|
||||
if len(sm['modelV2'].temporalPose.trans):
|
||||
model_v_ego = sm['modelV2'].temporalPose.trans[0]
|
||||
else:
|
||||
model_v_ego = self.v_ego
|
||||
leads_v3 = sm['modelV2'].leadsV3
|
||||
if len(leads_v3) > 1:
|
||||
self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
|
||||
self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
|
||||
|
||||
def publish(self, pm: messaging.PubMaster, lag_ms: float):
|
||||
assert self.radar_state is not None
|
||||
|
||||
radar_msg = messaging.new_message("radarState")
|
||||
radar_msg.valid = self.radar_state_valid
|
||||
radar_msg.radarState = self.radar_state
|
||||
radar_msg.radarState.cumLagMs = lag_ms
|
||||
pm.send("radarState", radar_msg)
|
||||
|
||||
# publish tracks for UI debugging (keep last)
|
||||
tracks_msg = messaging.new_message('liveTracks', len(self.tracks))
|
||||
tracks_msg.valid = self.radar_state_valid
|
||||
for index, tid in enumerate(sorted(self.tracks.keys())):
|
||||
tracks_msg.liveTracks[index] = {
|
||||
"trackId": tid,
|
||||
"dRel": float(self.tracks[tid].dRel),
|
||||
"yRel": float(self.tracks[tid].yRel),
|
||||
"vRel": float(self.tracks[tid].vRel),
|
||||
}
|
||||
pm.send('liveTracks', tracks_msg)
|
||||
|
||||
|
||||
# fuses camera and radar data for best lead detection
|
||||
def radard_thread(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None, can_sock: Optional[messaging.SubSocket] = None):
|
||||
config_realtime_process(5, Priority.CTRL_LOW)
|
||||
|
||||
# wait for stats about the car to come in from controls
|
||||
cloudlog.info("radard is waiting for CarParams")
|
||||
with car.CarParams.from_bytes(Params().get("CarParams", block=True)) as msg:
|
||||
CP = msg
|
||||
cloudlog.info("radard got CarParams")
|
||||
|
||||
# import the radar from the fingerprint
|
||||
cloudlog.info("radard is importing %s", CP.carName)
|
||||
RadarInterface = importlib.import_module(f'selfdrive.car.{CP.carName}.radar_interface').RadarInterface
|
||||
|
||||
# *** setup messaging
|
||||
if can_sock is None:
|
||||
can_sock = messaging.sub_sock('can')
|
||||
if sm is None:
|
||||
sm = messaging.SubMaster(['modelV2', 'carState'], ignore_avg_freq=['modelV2', 'carState']) # Can't check average frequency, since radar determines timing
|
||||
if pm is None:
|
||||
pm = messaging.PubMaster(['radarState', 'liveTracks'])
|
||||
|
||||
RI = RadarInterface(CP)
|
||||
|
||||
rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
|
||||
RD = RadarD(CP.radarTimeStep, RI.delay)
|
||||
|
||||
while 1:
|
||||
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
|
||||
rr = RI.update(can_strings)
|
||||
|
||||
if rr is None:
|
||||
continue
|
||||
|
||||
sm.update(0)
|
||||
|
||||
RD.update(sm, rr)
|
||||
RD.publish(pm, -rk.remaining*1000.0)
|
||||
|
||||
rk.monitor_time()
|
||||
|
||||
|
||||
def main(sm: Optional[messaging.SubMaster] = None, pm: Optional[messaging.PubMaster] = None, can_sock: messaging.SubSocket = None):
|
||||
radard_thread(sm, pm, can_sock)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user