openpilot v0.9.6 release
date: 2024-01-12T10:13:37 master commit: ba792d576a49a0899b88a753fa1c52956bedf9e6
This commit is contained in:
74
selfdrive/controls/lib/lateral_planner.py
Normal file
74
selfdrive/controls/lib/lateral_planner.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import numpy as np
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
|
||||
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
|
||||
import cereal.messaging as messaging
|
||||
from cereal import log
|
||||
|
||||
TRAJECTORY_SIZE = 33
|
||||
CAMERA_OFFSET = 0.04
|
||||
|
||||
class LateralPlanner:
|
||||
def __init__(self, CP, debug=False):
|
||||
self.DH = DesireHelper()
|
||||
|
||||
# Vehicle model parameters used to calculate lateral movement of car
|
||||
self.factor1 = CP.wheelbase - CP.centerToFront
|
||||
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
|
||||
self.last_cloudlog_t = 0
|
||||
self.solution_invalid_cnt = 0
|
||||
|
||||
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
|
||||
self.v_ego = MIN_SPEED
|
||||
self.l_lane_change_prob = 0.0
|
||||
self.r_lane_change_prob = 0.0
|
||||
|
||||
self.debug_mode = debug
|
||||
|
||||
def update(self, sm):
|
||||
v_ego_car = sm['carState'].vEgo
|
||||
|
||||
# Parse model predictions
|
||||
md = sm['modelV2']
|
||||
if len(md.position.x) == TRAJECTORY_SIZE and len(md.velocity.x) == TRAJECTORY_SIZE and len(md.lateralPlannerSolution.x) == TRAJECTORY_SIZE:
|
||||
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
||||
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
|
||||
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
|
||||
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
|
||||
self.v_ego = self.v_plan[0]
|
||||
self.x_sol = np.column_stack([md.lateralPlannerSolution.x, md.lateralPlannerSolution.y, md.lateralPlannerSolution.yaw, md.lateralPlannerSolution.yawRate])
|
||||
|
||||
# Lane change logic
|
||||
desire_state = md.meta.desireState
|
||||
if len(desire_state):
|
||||
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
|
||||
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
|
||||
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
|
||||
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
|
||||
|
||||
def publish(self, sm, pm):
|
||||
plan_send = messaging.new_message('lateralPlan')
|
||||
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
|
||||
|
||||
lateralPlan = plan_send.lateralPlan
|
||||
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
||||
lateralPlan.dPathPoints = self.path_xyz[:,1].tolist()
|
||||
lateralPlan.psis = self.x_sol[0:CONTROL_N, 2].tolist()
|
||||
|
||||
lateralPlan.curvatures = (self.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
|
||||
lateralPlan.curvatureRates = [float(0) for _ in range(CONTROL_N-1)] # TODO: unused
|
||||
|
||||
lateralPlan.mpcSolutionValid = bool(1)
|
||||
lateralPlan.solverExecutionTime = 0.0
|
||||
if self.debug_mode:
|
||||
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
|
||||
lateralPlan.solverState.x = self.x_sol.tolist()
|
||||
|
||||
lateralPlan.desire = self.DH.desire
|
||||
lateralPlan.useLaneLines = False
|
||||
lateralPlan.laneChangeState = self.DH.lane_change_state
|
||||
lateralPlan.laneChangeDirection = self.DH.lane_change_direction
|
||||
|
||||
pm.send('lateralPlan', plan_send)
|
||||
Reference in New Issue
Block a user