openpilot v0.9.6 release
date: 2024-01-12T10:13:37 master commit: ba792d576a49a0899b88a753fa1c52956bedf9e6
This commit is contained in:
231
selfdrive/controls/lib/vehicle_model.py
Executable file
231
selfdrive/controls/lib/vehicle_model.py
Executable file
@@ -0,0 +1,231 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Dynamic bicycle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani"
|
||||
|
||||
The state is x = [v, r]^T
|
||||
with v lateral speed [m/s], and r rotational speed [rad/s]
|
||||
|
||||
The input u is the steering angle [rad], and roll [rad]
|
||||
|
||||
The system is defined by
|
||||
x_dot = A*x + B*u
|
||||
|
||||
A depends on longitudinal speed, u [m/s], and vehicle parameters CP
|
||||
"""
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import solve
|
||||
|
||||
from cereal import car
|
||||
|
||||
ACCELERATION_DUE_TO_GRAVITY = 9.8
|
||||
|
||||
|
||||
class VehicleModel:
|
||||
def __init__(self, CP: car.CarParams):
|
||||
"""
|
||||
Args:
|
||||
CP: Car Parameters
|
||||
"""
|
||||
# for math readability, convert long names car params into short names
|
||||
self.m: float = CP.mass
|
||||
self.j: float = CP.rotationalInertia
|
||||
self.l: float = CP.wheelbase
|
||||
self.aF: float = CP.centerToFront
|
||||
self.aR: float = CP.wheelbase - CP.centerToFront
|
||||
self.chi: float = CP.steerRatioRear
|
||||
|
||||
self.cF_orig: float = CP.tireStiffnessFront
|
||||
self.cR_orig: float = CP.tireStiffnessRear
|
||||
self.update_params(1.0, CP.steerRatio)
|
||||
|
||||
def update_params(self, stiffness_factor: float, steer_ratio: float) -> None:
|
||||
"""Update the vehicle model with a new stiffness factor and steer ratio"""
|
||||
self.cF: float = stiffness_factor * self.cF_orig
|
||||
self.cR: float = stiffness_factor * self.cR_orig
|
||||
self.sR: float = steer_ratio
|
||||
|
||||
def steady_state_sol(self, sa: float, u: float, roll: float) -> np.ndarray:
|
||||
"""Returns the steady state solution.
|
||||
|
||||
If the speed is too low we can't use the dynamic model (tire slip is undefined),
|
||||
we then have to use the kinematic model
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution (lateral speed, rotational speed)
|
||||
"""
|
||||
if u > 0.1:
|
||||
return dyn_ss_sol(sa, u, roll, self)
|
||||
else:
|
||||
return kin_ss_sol(sa, u, self)
|
||||
|
||||
def calc_curvature(self, sa: float, u: float, roll: float) -> float:
|
||||
"""Returns the curvature. Multiplied by the speed this will give the yaw rate.
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Curvature factor [1/m]
|
||||
"""
|
||||
return (self.curvature_factor(u) * sa / self.sR) + self.roll_compensation(roll, u)
|
||||
|
||||
def curvature_factor(self, u: float) -> float:
|
||||
"""Returns the curvature factor.
|
||||
Multiplied by wheel angle (not steering wheel angle) this will give the curvature.
|
||||
|
||||
Args:
|
||||
u: Speed [m/s]
|
||||
|
||||
Returns:
|
||||
Curvature factor [1/m]
|
||||
"""
|
||||
sf = calc_slip_factor(self)
|
||||
return (1. - self.chi) / (1. - sf * u**2) / self.l
|
||||
|
||||
def get_steer_from_curvature(self, curv: float, u: float, roll: float) -> float:
|
||||
"""Calculates the required steering wheel angle for a given curvature
|
||||
|
||||
Args:
|
||||
curv: Desired curvature [1/m]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Steering wheel angle [rad]
|
||||
"""
|
||||
|
||||
return (curv - self.roll_compensation(roll, u)) * self.sR * 1.0 / self.curvature_factor(u)
|
||||
|
||||
def roll_compensation(self, roll: float, u: float) -> float:
|
||||
"""Calculates the roll-compensation to curvature
|
||||
|
||||
Args:
|
||||
roll: Road Roll [rad]
|
||||
u: Speed [m/s]
|
||||
|
||||
Returns:
|
||||
Roll compensation curvature [rad]
|
||||
"""
|
||||
sf = calc_slip_factor(self)
|
||||
|
||||
if abs(sf) < 1e-6:
|
||||
return 0
|
||||
else:
|
||||
return (ACCELERATION_DUE_TO_GRAVITY * roll) / ((1 / sf) - u**2)
|
||||
|
||||
def get_steer_from_yaw_rate(self, yaw_rate: float, u: float, roll: float) -> float:
|
||||
"""Calculates the required steering wheel angle for a given yaw_rate
|
||||
|
||||
Args:
|
||||
yaw_rate: Desired yaw rate [rad/s]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Steering wheel angle [rad]
|
||||
"""
|
||||
curv = yaw_rate / u
|
||||
return self.get_steer_from_curvature(curv, u, roll)
|
||||
|
||||
def yaw_rate(self, sa: float, u: float, roll: float) -> float:
|
||||
"""Calculate yaw rate
|
||||
|
||||
Args:
|
||||
sa: Steering wheel angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
|
||||
Returns:
|
||||
Yaw rate [rad/s]
|
||||
"""
|
||||
return self.calc_curvature(sa, u, roll) * u
|
||||
|
||||
|
||||
def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
|
||||
"""Calculate the steady state solution at low speeds
|
||||
At low speeds the tire slip is undefined, so a kinematic
|
||||
model is used.
|
||||
|
||||
Args:
|
||||
sa: Steering angle [rad]
|
||||
u: Speed [m/s]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution
|
||||
"""
|
||||
K = np.zeros((2, 1))
|
||||
K[0, 0] = VM.aR / VM.sR / VM.l * u
|
||||
K[1, 0] = 1. / VM.sR / VM.l * u
|
||||
return K * sa
|
||||
|
||||
|
||||
def create_dyn_state_matrices(u: float, VM: VehicleModel) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Returns the A and B matrix for the dynamics system
|
||||
|
||||
Args:
|
||||
u: Vehicle speed [m/s]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
A tuple with the 2x2 A matrix, and 2x2 B matrix
|
||||
|
||||
Parameters in the vehicle model:
|
||||
cF: Tire stiffness Front [N/rad]
|
||||
cR: Tire stiffness Front [N/rad]
|
||||
aF: Distance from CG to front wheels [m]
|
||||
aR: Distance from CG to rear wheels [m]
|
||||
m: Mass [kg]
|
||||
j: Rotational inertia [kg m^2]
|
||||
sR: Steering ratio [-]
|
||||
chi: Steer ratio rear [-]
|
||||
"""
|
||||
A = np.zeros((2, 2))
|
||||
B = np.zeros((2, 2))
|
||||
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
|
||||
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
|
||||
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
|
||||
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
|
||||
|
||||
# Steering input
|
||||
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
|
||||
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
|
||||
|
||||
# Roll input
|
||||
B[0, 1] = -ACCELERATION_DUE_TO_GRAVITY
|
||||
|
||||
return A, B
|
||||
|
||||
|
||||
def dyn_ss_sol(sa: float, u: float, roll: float, VM: VehicleModel) -> np.ndarray:
|
||||
"""Calculate the steady state solution when x_dot = 0,
|
||||
Ax + Bu = 0 => x = -A^{-1} B u
|
||||
|
||||
Args:
|
||||
sa: Steering angle [rad]
|
||||
u: Speed [m/s]
|
||||
roll: Road Roll [rad]
|
||||
VM: Vehicle model
|
||||
|
||||
Returns:
|
||||
2x1 matrix with steady state solution
|
||||
"""
|
||||
A, B = create_dyn_state_matrices(u, VM)
|
||||
inp = np.array([[sa], [roll]])
|
||||
return -solve(A, B) @ inp # type: ignore
|
||||
|
||||
|
||||
def calc_slip_factor(VM: VehicleModel) -> float:
|
||||
"""The slip factor is a measure of how the curvature changes with speed
|
||||
it's positive for Oversteering vehicle, negative (usual case) otherwise.
|
||||
"""
|
||||
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
|
||||
Reference in New Issue
Block a user