openpilot v0.9.6 release
date: 2024-01-12T10:13:37 master commit: ba792d576a49a0899b88a753fa1c52956bedf9e6
This commit is contained in:
260
selfdrive/locationd/paramsd.py
Executable file
260
selfdrive/locationd/paramsd.py
Executable file
@@ -0,0 +1,260 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import math
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
import cereal.messaging as messaging
|
||||
from cereal import car
|
||||
from cereal import log
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.common.realtime import config_realtime_process, DT_MDL
|
||||
from openpilot.common.numpy_fast import clip
|
||||
from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
|
||||
from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
|
||||
|
||||
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
|
||||
ROLL_MAX_DELTA = math.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
|
||||
ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
|
||||
ROLL_LOWERED_MAX = math.radians(8)
|
||||
ROLL_STD_MAX = math.radians(1.5)
|
||||
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
|
||||
OFFSET_MAX = 10.0
|
||||
OFFSET_LOWERED_MAX = 8.0
|
||||
MIN_ACTIVE_SPEED = 1.0
|
||||
LOW_ACTIVE_SPEED = 10.0
|
||||
|
||||
|
||||
class ParamsLearner:
|
||||
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
|
||||
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
|
||||
|
||||
self.kf.filter.set_global("mass", CP.mass)
|
||||
self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
|
||||
self.kf.filter.set_global("center_to_front", CP.centerToFront)
|
||||
self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
|
||||
self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
|
||||
self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
|
||||
|
||||
self.active = False
|
||||
|
||||
self.speed = 0.0
|
||||
self.yaw_rate = 0.0
|
||||
self.yaw_rate_std = 0.0
|
||||
self.roll = 0.0
|
||||
self.steering_angle = 0.0
|
||||
self.roll_valid = False
|
||||
|
||||
def handle_log(self, t, which, msg):
|
||||
if which == 'liveLocationKalman':
|
||||
self.yaw_rate = msg.angularVelocityCalibrated.value[2]
|
||||
self.yaw_rate_std = msg.angularVelocityCalibrated.std[2]
|
||||
|
||||
localizer_roll = msg.orientationNED.value[0]
|
||||
localizer_roll_std = np.radians(1) if np.isnan(msg.orientationNED.std[0]) else msg.orientationNED.std[0]
|
||||
self.roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
|
||||
if self.roll_valid:
|
||||
roll = localizer_roll
|
||||
# Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
|
||||
roll_std = 2 * localizer_roll_std
|
||||
else:
|
||||
# This is done to bound the road roll estimate when localizer values are invalid
|
||||
roll = 0.0
|
||||
roll_std = np.radians(10.0)
|
||||
self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
|
||||
|
||||
yaw_rate_valid = msg.angularVelocityCalibrated.valid
|
||||
yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10 # rad/s
|
||||
yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1 # rad/s
|
||||
|
||||
if self.active:
|
||||
if msg.posenetOK:
|
||||
|
||||
if yaw_rate_valid:
|
||||
self.kf.predict_and_observe(t,
|
||||
ObservationKind.ROAD_FRAME_YAW_RATE,
|
||||
np.array([[-self.yaw_rate]]),
|
||||
np.array([np.atleast_2d(self.yaw_rate_std**2)]))
|
||||
|
||||
self.kf.predict_and_observe(t,
|
||||
ObservationKind.ROAD_ROLL,
|
||||
np.array([[self.roll]]),
|
||||
np.array([np.atleast_2d(roll_std**2)]))
|
||||
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
|
||||
|
||||
# We observe the current stiffness and steer ratio (with a high observation noise) to bound
|
||||
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
|
||||
# states in longer routes (especially straight stretches).
|
||||
stiffness = float(self.kf.x[States.STIFFNESS].item())
|
||||
steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
|
||||
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
|
||||
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
|
||||
|
||||
elif which == 'carState':
|
||||
self.steering_angle = msg.steeringAngleDeg
|
||||
self.speed = msg.vEgo
|
||||
|
||||
in_linear_region = abs(self.steering_angle) < 45
|
||||
self.active = self.speed > MIN_ACTIVE_SPEED and in_linear_region
|
||||
|
||||
if self.active:
|
||||
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
|
||||
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
|
||||
|
||||
if not self.active:
|
||||
# Reset time when stopped so uncertainty doesn't grow
|
||||
self.kf.filter.set_filter_time(t)
|
||||
self.kf.filter.reset_rewind()
|
||||
|
||||
|
||||
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
|
||||
if current_valid:
|
||||
current_valid = abs(val) < threshold
|
||||
else:
|
||||
current_valid = abs(val) < lowered_threshold
|
||||
return current_valid
|
||||
|
||||
|
||||
def main():
|
||||
config_realtime_process([0, 1, 2, 3], 5)
|
||||
|
||||
DEBUG = bool(int(os.getenv("DEBUG", "0")))
|
||||
REPLAY = bool(int(os.getenv("REPLAY", "0")))
|
||||
|
||||
pm = messaging.PubMaster(['liveParameters'])
|
||||
sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
|
||||
|
||||
params_reader = Params()
|
||||
# wait for stats about the car to come in from controls
|
||||
cloudlog.info("paramsd is waiting for CarParams")
|
||||
with car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) as msg:
|
||||
CP = msg
|
||||
cloudlog.info("paramsd got CarParams")
|
||||
|
||||
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
|
||||
|
||||
params = params_reader.get("LiveParameters")
|
||||
|
||||
# Check if car model matches
|
||||
if params is not None:
|
||||
params = json.loads(params)
|
||||
if params.get('carFingerprint', None) != CP.carFingerprint:
|
||||
cloudlog.info("Parameter learner found parameters for wrong car.")
|
||||
params = None
|
||||
|
||||
# Check if starting values are sane
|
||||
if params is not None:
|
||||
try:
|
||||
steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
|
||||
if not steer_ratio_sane:
|
||||
cloudlog.info(f"Invalid starting values found {params}")
|
||||
params = None
|
||||
except Exception as e:
|
||||
cloudlog.info(f"Error reading params {params}: {str(e)}")
|
||||
params = None
|
||||
|
||||
# TODO: cache the params with the capnp struct
|
||||
if params is None:
|
||||
params = {
|
||||
'carFingerprint': CP.carFingerprint,
|
||||
'steerRatio': CP.steerRatio,
|
||||
'stiffnessFactor': 1.0,
|
||||
'angleOffsetAverageDeg': 0.0,
|
||||
}
|
||||
cloudlog.info("Parameter learner resetting to default values")
|
||||
|
||||
if not REPLAY:
|
||||
# When driving in wet conditions the stiffness can go down, and then be too low on the next drive
|
||||
# Without a way to detect this we have to reset the stiffness every drive
|
||||
params['stiffnessFactor'] = 1.0
|
||||
|
||||
pInitial = None
|
||||
if DEBUG:
|
||||
pInitial = np.array(params['filterState']['std']) if 'filterState' in params else None
|
||||
|
||||
learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']), pInitial)
|
||||
angle_offset_average = params['angleOffsetAverageDeg']
|
||||
angle_offset = angle_offset_average
|
||||
roll = 0.0
|
||||
avg_offset_valid = True
|
||||
total_offset_valid = True
|
||||
roll_valid = True
|
||||
|
||||
while True:
|
||||
sm.update()
|
||||
if sm.all_checks():
|
||||
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
|
||||
if sm.updated[which]:
|
||||
t = sm.logMonoTime[which] * 1e-9
|
||||
learner.handle_log(t, which, sm[which])
|
||||
|
||||
if sm.updated['liveLocationKalman']:
|
||||
x = learner.kf.x
|
||||
P = np.sqrt(learner.kf.P.diagonal())
|
||||
if not all(map(math.isfinite, x)):
|
||||
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
|
||||
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
|
||||
x = learner.kf.x
|
||||
|
||||
angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()),
|
||||
angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
|
||||
angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
|
||||
angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
|
||||
roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
|
||||
roll_std = float(P[States.ROAD_ROLL].item())
|
||||
if learner.active and learner.speed > LOW_ACTIVE_SPEED:
|
||||
# Account for the opposite signs of the yaw rates
|
||||
# At low speeds, bumping into a curb can cause the yaw rate to be very high
|
||||
sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
|
||||
else:
|
||||
sensors_valid = True
|
||||
avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX)
|
||||
total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
|
||||
roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX)
|
||||
|
||||
msg = messaging.new_message('liveParameters')
|
||||
|
||||
liveParameters = msg.liveParameters
|
||||
liveParameters.posenetValid = True
|
||||
liveParameters.sensorValid = sensors_valid
|
||||
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
|
||||
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
|
||||
liveParameters.roll = roll
|
||||
liveParameters.angleOffsetAverageDeg = angle_offset_average
|
||||
liveParameters.angleOffsetDeg = angle_offset
|
||||
liveParameters.valid = all((
|
||||
avg_offset_valid,
|
||||
total_offset_valid,
|
||||
roll_valid,
|
||||
roll_std < ROLL_STD_MAX,
|
||||
0.2 <= liveParameters.stiffnessFactor <= 5.0,
|
||||
min_sr <= liveParameters.steerRatio <= max_sr,
|
||||
))
|
||||
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
|
||||
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
|
||||
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
|
||||
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
|
||||
if DEBUG:
|
||||
liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message()
|
||||
liveParameters.filterState.value = x.tolist()
|
||||
liveParameters.filterState.std = P.tolist()
|
||||
liveParameters.filterState.valid = True
|
||||
|
||||
msg.valid = sm.all_checks()
|
||||
|
||||
if sm.frame % 1200 == 0: # once a minute
|
||||
params = {
|
||||
'carFingerprint': CP.carFingerprint,
|
||||
'steerRatio': liveParameters.steerRatio,
|
||||
'stiffnessFactor': liveParameters.stiffnessFactor,
|
||||
'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg,
|
||||
}
|
||||
params_reader.put_nonblocking("LiveParameters", json.dumps(params))
|
||||
|
||||
pm.send('liveParameters', msg)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user