openpilot v0.9.6 release
date: 2024-01-12T10:13:37 master commit: ba792d576a49a0899b88a753fa1c52956bedf9e6
This commit is contained in:
118
selfdrive/modeld/navmodeld.py
Executable file
118
selfdrive/modeld/navmodeld.py
Executable file
@@ -0,0 +1,118 @@
|
||||
#!/usr/bin/env python3
|
||||
import gc
|
||||
import math
|
||||
import time
|
||||
import ctypes
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from typing import Tuple, Dict
|
||||
|
||||
from cereal import messaging
|
||||
from cereal.messaging import PubMaster, SubMaster
|
||||
from cereal.visionipc import VisionIpcClient, VisionStreamType
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.common.realtime import set_realtime_priority
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
|
||||
|
||||
NAV_INPUT_SIZE = 256*256
|
||||
NAV_FEATURE_LEN = 256
|
||||
NAV_DESIRE_LEN = 32
|
||||
NAV_OUTPUT_SIZE = 2*2*ModelConstants.IDX_N + NAV_DESIRE_LEN + NAV_FEATURE_LEN
|
||||
MODEL_PATHS = {
|
||||
ModelRunner.SNPE: Path(__file__).parent / 'models/navmodel_q.dlc',
|
||||
ModelRunner.ONNX: Path(__file__).parent / 'models/navmodel.onnx'}
|
||||
|
||||
class NavModelOutputXY(ctypes.Structure):
|
||||
_fields_ = [
|
||||
("x", ctypes.c_float),
|
||||
("y", ctypes.c_float)]
|
||||
|
||||
class NavModelOutputPlan(ctypes.Structure):
|
||||
_fields_ = [
|
||||
("mean", NavModelOutputXY*ModelConstants.IDX_N),
|
||||
("std", NavModelOutputXY*ModelConstants.IDX_N)]
|
||||
|
||||
class NavModelResult(ctypes.Structure):
|
||||
_fields_ = [
|
||||
("plan", NavModelOutputPlan),
|
||||
("desire_pred", ctypes.c_float*NAV_DESIRE_LEN),
|
||||
("features", ctypes.c_float*NAV_FEATURE_LEN)]
|
||||
|
||||
class ModelState:
|
||||
inputs: Dict[str, np.ndarray]
|
||||
output: np.ndarray
|
||||
model: ModelRunner
|
||||
|
||||
def __init__(self):
|
||||
assert ctypes.sizeof(NavModelResult) == NAV_OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
|
||||
self.output = np.zeros(NAV_OUTPUT_SIZE, dtype=np.float32)
|
||||
self.inputs = {'input_img': np.zeros(NAV_INPUT_SIZE, dtype=np.uint8)}
|
||||
self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.DSP, True, None)
|
||||
self.model.addInput("input_img", None)
|
||||
|
||||
def run(self, buf:np.ndarray) -> Tuple[np.ndarray, float]:
|
||||
self.inputs['input_img'][:] = buf
|
||||
|
||||
t1 = time.perf_counter()
|
||||
self.model.setInputBuffer("input_img", self.inputs['input_img'].view(np.float32))
|
||||
self.model.execute()
|
||||
t2 = time.perf_counter()
|
||||
return self.output, t2 - t1
|
||||
|
||||
def get_navmodel_packet(model_output: np.ndarray, valid: bool, frame_id: int, location_ts: int, execution_time: float, dsp_execution_time: float):
|
||||
model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(NavModelResult)).contents
|
||||
msg = messaging.new_message('navModel')
|
||||
msg.valid = valid
|
||||
msg.navModel.frameId = frame_id
|
||||
msg.navModel.locationMonoTime = location_ts
|
||||
msg.navModel.modelExecutionTime = execution_time
|
||||
msg.navModel.dspExecutionTime = dsp_execution_time
|
||||
msg.navModel.features = model_result.features[:]
|
||||
msg.navModel.desirePrediction = model_result.desire_pred[:]
|
||||
msg.navModel.position.x = [p.x for p in model_result.plan.mean]
|
||||
msg.navModel.position.y = [p.y for p in model_result.plan.mean]
|
||||
msg.navModel.position.xStd = [math.exp(p.x) for p in model_result.plan.std]
|
||||
msg.navModel.position.yStd = [math.exp(p.y) for p in model_result.plan.std]
|
||||
return msg
|
||||
|
||||
|
||||
def main():
|
||||
gc.disable()
|
||||
set_realtime_priority(1)
|
||||
|
||||
# there exists a race condition when two processes try to create a
|
||||
# SNPE model runner at the same time, wait for dmonitoringmodeld to finish
|
||||
cloudlog.warning("waiting for dmonitoringmodeld to initialize")
|
||||
if not Params().get_bool("DmModelInitialized", True):
|
||||
return
|
||||
|
||||
model = ModelState()
|
||||
cloudlog.warning("models loaded, navmodeld starting")
|
||||
|
||||
vipc_client = VisionIpcClient("navd", VisionStreamType.VISION_STREAM_MAP, True)
|
||||
while not vipc_client.connect(False):
|
||||
time.sleep(0.1)
|
||||
assert vipc_client.is_connected()
|
||||
cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
|
||||
|
||||
sm = SubMaster(["navInstruction"])
|
||||
pm = PubMaster(["navModel"])
|
||||
|
||||
while True:
|
||||
buf = vipc_client.recv()
|
||||
if buf is None:
|
||||
continue
|
||||
|
||||
sm.update(0)
|
||||
t1 = time.perf_counter()
|
||||
model_output, dsp_execution_time = model.run(buf.data[:buf.uv_offset])
|
||||
t2 = time.perf_counter()
|
||||
|
||||
valid = vipc_client.valid and sm.valid["navInstruction"]
|
||||
pm.send("navModel", get_navmodel_packet(model_output, valid, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, dsp_execution_time))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user