openpilot v0.9.6 release
date: 2024-01-12T10:13:37 master commit: ba792d576a49a0899b88a753fa1c52956bedf9e6
This commit is contained in:
216
third_party/acados/acados_template/gnsf/check_reformulation.py
vendored
Normal file
216
third_party/acados/acados_template/gnsf/check_reformulation.py
vendored
Normal file
@@ -0,0 +1,216 @@
|
||||
#
|
||||
# Copyright (c) The acados authors.
|
||||
#
|
||||
# This file is part of acados.
|
||||
#
|
||||
# The 2-Clause BSD License
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice,
|
||||
# this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.;
|
||||
#
|
||||
|
||||
from acados_template.utils import casadi_length
|
||||
from casadi import *
|
||||
import numpy as np
|
||||
|
||||
|
||||
def check_reformulation(model, gnsf, print_info):
|
||||
|
||||
## Description:
|
||||
# this function takes the implicit ODE/ index-1 DAE and a gnsf structure
|
||||
# to evaluate both models at num_eval random points x0, x0dot, z0, u0
|
||||
# if for all points the relative error is <= TOL, the function will return::
|
||||
# 1, otherwise it will give an error.
|
||||
|
||||
TOL = 1e-14
|
||||
num_eval = 10
|
||||
|
||||
# get dimensions
|
||||
nx = gnsf["nx"]
|
||||
nu = gnsf["nu"]
|
||||
nz = gnsf["nz"]
|
||||
nx1 = gnsf["nx1"]
|
||||
nx2 = gnsf["nx2"]
|
||||
nz1 = gnsf["nz1"]
|
||||
nz2 = gnsf["nz2"]
|
||||
n_out = gnsf["n_out"]
|
||||
|
||||
# get model matrices
|
||||
A = gnsf["A"]
|
||||
B = gnsf["B"]
|
||||
C = gnsf["C"]
|
||||
E = gnsf["E"]
|
||||
c = gnsf["c"]
|
||||
|
||||
L_x = gnsf["L_x"]
|
||||
L_xdot = gnsf["L_xdot"]
|
||||
L_z = gnsf["L_z"]
|
||||
L_u = gnsf["L_u"]
|
||||
|
||||
A_LO = gnsf["A_LO"]
|
||||
E_LO = gnsf["E_LO"]
|
||||
B_LO = gnsf["B_LO"]
|
||||
c_LO = gnsf["c_LO"]
|
||||
|
||||
I_x1 = range(nx1)
|
||||
I_x2 = range(nx1, nx)
|
||||
|
||||
I_z1 = range(nz1)
|
||||
I_z2 = range(nz1, nz)
|
||||
|
||||
idx_perm_f = gnsf["idx_perm_f"]
|
||||
|
||||
# get casadi variables
|
||||
x = gnsf["x"]
|
||||
xdot = gnsf["xdot"]
|
||||
z = gnsf["z"]
|
||||
u = gnsf["u"]
|
||||
y = gnsf["y"]
|
||||
uhat = gnsf["uhat"]
|
||||
p = gnsf["p"]
|
||||
|
||||
# create functions
|
||||
impl_dae_fun = Function("impl_dae_fun", [x, xdot, u, z, p], [model.f_impl_expr])
|
||||
phi_fun = Function("phi_fun", [y, uhat, p], [gnsf["phi_expr"]])
|
||||
f_lo_fun = Function(
|
||||
"f_lo_fun", [x[range(nx1)], xdot[range(nx1)], z, u, p], [gnsf["f_lo_expr"]]
|
||||
)
|
||||
|
||||
# print(gnsf)
|
||||
# print(gnsf["n_out"])
|
||||
|
||||
for i_check in range(num_eval):
|
||||
# generate random values
|
||||
x0 = np.random.rand(nx, 1)
|
||||
x0dot = np.random.rand(nx, 1)
|
||||
z0 = np.random.rand(nz, 1)
|
||||
u0 = np.random.rand(nu, 1)
|
||||
|
||||
if gnsf["ny"] > 0:
|
||||
y0 = L_x @ x0[I_x1] + L_xdot @ x0dot[I_x1] + L_z @ z0[I_z1]
|
||||
else:
|
||||
y0 = []
|
||||
if gnsf["nuhat"] > 0:
|
||||
uhat0 = L_u @ u0
|
||||
else:
|
||||
uhat0 = []
|
||||
|
||||
# eval functions
|
||||
p0 = np.random.rand(gnsf["np"], 1)
|
||||
f_impl_val = impl_dae_fun(x0, x0dot, u0, z0, p0).full()
|
||||
phi_val = phi_fun(y0, uhat0, p0)
|
||||
f_lo_val = f_lo_fun(x0[I_x1], x0dot[I_x1], z0[I_z1], u0, p0)
|
||||
|
||||
f_impl_val = f_impl_val[idx_perm_f]
|
||||
# eval gnsf
|
||||
if n_out > 0:
|
||||
C_phi = C @ phi_val
|
||||
else:
|
||||
C_phi = np.zeros((nx1 + nz1, 1))
|
||||
try:
|
||||
gnsf_val1 = (
|
||||
A @ x0[I_x1] + B @ u0 + C_phi + c - E @ vertcat(x0dot[I_x1], z0[I_z1])
|
||||
)
|
||||
# gnsf_1 = (A @ x[I_x1] + B @ u + C_phi + c - E @ vertcat(xdot[I_x1], z[I_z1]))
|
||||
except:
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
if nx2 > 0: # eval LOS:
|
||||
gnsf_val2 = (
|
||||
A_LO @ x0[I_x2]
|
||||
+ B_LO @ u0
|
||||
+ c_LO
|
||||
+ f_lo_val
|
||||
- E_LO @ vertcat(x0dot[I_x2], z0[I_z2])
|
||||
)
|
||||
gnsf_val = vertcat(gnsf_val1, gnsf_val2).full()
|
||||
else:
|
||||
gnsf_val = gnsf_val1.full()
|
||||
# compute error and check
|
||||
rel_error = np.linalg.norm(f_impl_val - gnsf_val) / np.linalg.norm(f_impl_val)
|
||||
|
||||
if rel_error > TOL:
|
||||
print("transcription failed rel_error > TOL")
|
||||
print("you are in debug mode now: import pdb; pdb.set_trace()")
|
||||
abs_error = gnsf_val - f_impl_val
|
||||
# T = table(f_impl_val, gnsf_val, abs_error)
|
||||
# print(T)
|
||||
print("abs_error:", abs_error)
|
||||
# error('transcription failed rel_error > TOL')
|
||||
# check = 0
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
if print_info:
|
||||
print(" ")
|
||||
print("model reformulation checked: relative error <= TOL = ", str(TOL))
|
||||
print(" ")
|
||||
check = 1
|
||||
## helpful for debugging:
|
||||
# # use in calling function and compare
|
||||
# # compare f_impl(i) with gnsf_val1(i)
|
||||
#
|
||||
|
||||
# nx = gnsf['nx']
|
||||
# nu = gnsf['nu']
|
||||
# nz = gnsf['nz']
|
||||
# nx1 = gnsf['nx1']
|
||||
# nx2 = gnsf['nx2']
|
||||
#
|
||||
# A = gnsf['A']
|
||||
# B = gnsf['B']
|
||||
# C = gnsf['C']
|
||||
# E = gnsf['E']
|
||||
# c = gnsf['c']
|
||||
#
|
||||
# L_x = gnsf['L_x']
|
||||
# L_z = gnsf['L_z']
|
||||
# L_xdot = gnsf['L_xdot']
|
||||
# L_u = gnsf['L_u']
|
||||
#
|
||||
# A_LO = gnsf['A_LO']
|
||||
#
|
||||
# x0 = rand(nx, 1)
|
||||
# x0dot = rand(nx, 1)
|
||||
# z0 = rand(nz, 1)
|
||||
# u0 = rand(nu, 1)
|
||||
# I_x1 = range(nx1)
|
||||
# I_x2 = nx1+range(nx)
|
||||
#
|
||||
# y0 = L_x @ x0[I_x1] + L_xdot @ x0dot[I_x1] + L_z @ z0
|
||||
# uhat0 = L_u @ u0
|
||||
#
|
||||
# gnsf_val1 = (A @ x[I_x1] + B @ u + # C @ phi_current + c) - E @ [xdot[I_x1] z]
|
||||
# gnsf_val1 = gnsf_val1.simplify()
|
||||
#
|
||||
# # gnsf_val2 = A_LO @ x[I_x2] + gnsf['f_lo_fun'](x[I_x1], xdot[I_x1], z, u) - xdot[I_x2]
|
||||
# gnsf_val2 = A_LO @ x[I_x2] + gnsf['f_lo_fun'](x[I_x1], xdot[I_x1], z, u) - xdot[I_x2]
|
||||
#
|
||||
#
|
||||
# gnsf_val = [gnsf_val1 gnsf_val2]
|
||||
# gnsf_val = gnsf_val.simplify()
|
||||
# dyn_expr_f = dyn_expr_f.simplify()
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
return check
|
||||
Reference in New Issue
Block a user