Map Turn Speed Control
Added toggle for "Map Turn Speed Control". Credit goes to Pfeiferj! https: //github.com/pfeiferj Co-Authored-By: Jacob Pfeifer <jacob@pfeifer.dev>
This commit is contained in:
BIN
selfdrive/frogpilot/assets/toggle_icons/icon_speed_map.png
Normal file
BIN
selfdrive/frogpilot/assets/toggle_icons/icon_speed_map.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 63 KiB |
@@ -2,13 +2,14 @@ import cereal.messaging as messaging
|
||||
import numpy as np
|
||||
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.numpy_fast import interp
|
||||
from openpilot.common.numpy_fast import clip, interp
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, V_CRUISE_MAX
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, A_CRUISE_MAX_VALS, A_CRUISE_MAX_BP, get_max_accel
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
|
||||
from openpilot.selfdrive.frogpilot.functions.conditional_experimental_mode import ConditionalExperimentalMode
|
||||
from openpilot.selfdrive.frogpilot.functions.map_turn_speed_controller import MapTurnSpeedController
|
||||
|
||||
# Acceleration profiles - Credit goes to the DragonPilot team!
|
||||
# MPH = [0., 35, 35, 40, 40, 45, 45, 67, 67, 67, 123]
|
||||
@@ -51,7 +52,9 @@ def calculate_lane_width(lane, current_lane, road_edge):
|
||||
class FrogPilotPlanner:
|
||||
def __init__(self, params):
|
||||
self.cem = ConditionalExperimentalMode()
|
||||
self.mtsc = MapTurnSpeedController()
|
||||
|
||||
self.mtsc_target = 0
|
||||
self.v_cruise = 0
|
||||
|
||||
self.x_desired_trajectory = np.zeros(CONTROL_N)
|
||||
@@ -68,7 +71,10 @@ class FrogPilotPlanner:
|
||||
v_ego = carState.vEgo
|
||||
|
||||
# Acceleration profiles
|
||||
if self.acceleration_profile == 1:
|
||||
v_cruise_changed = (self.mtsc_target) + 1 < v_cruise # Use stock acceleration profiles to handle MTSC more precisely
|
||||
if v_cruise_changed:
|
||||
self.accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
|
||||
elif self.acceleration_profile == 1:
|
||||
self.accel_limits = [get_min_accel_eco_tune(v_ego), get_max_accel_eco_tune(v_ego)]
|
||||
elif self.acceleration_profile in (2, 3):
|
||||
self.accel_limits = [get_min_accel_sport_tune(v_ego), get_max_accel_sport_tune(v_ego)]
|
||||
@@ -85,8 +91,16 @@ class FrogPilotPlanner:
|
||||
self.x_desired_trajectory = self.x_desired_trajectory_full[:CONTROL_N]
|
||||
|
||||
def update_v_cruise(self, carState, controlsState, modelData, enabled, v_cruise, v_ego):
|
||||
# Pfeiferj's Map Turn Speed Controller
|
||||
if self.map_turn_speed_controller:
|
||||
self.mtsc_target = np.clip(self.mtsc.target_speed(v_ego, carState.aEgo), MIN_TARGET_V, v_cruise)
|
||||
if self.mtsc_target == MIN_TARGET_V:
|
||||
self.mtsc_target = v_cruise
|
||||
else:
|
||||
self.mtsc_target = v_cruise
|
||||
|
||||
v_ego_diff = max(carState.vEgoRaw - carState.vEgoCluster, 0)
|
||||
return v_cruise - v_ego_diff
|
||||
return min(v_cruise, self.mtsc_target) - v_ego_diff
|
||||
|
||||
def publish_lateral(self, sm, pm, DH):
|
||||
frogpilot_lateral_plan_send = messaging.new_message('frogpilotLateralPlan')
|
||||
@@ -103,6 +117,7 @@ class FrogPilotPlanner:
|
||||
frogpilot_longitudinal_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
|
||||
frogpilotLongitudinalPlan = frogpilot_longitudinal_plan_send.frogpilotLongitudinalPlan
|
||||
|
||||
frogpilotLongitudinalPlan.adjustedCruise = float(min(self.mtsc_target) * (CV.MS_TO_KPH if self.is_metric else CV.MS_TO_MPH))
|
||||
frogpilotLongitudinalPlan.conditionalExperimental = self.cem.experimental_mode
|
||||
frogpilotLongitudinalPlan.distances = self.x_desired_trajectory.tolist()
|
||||
frogpilotLongitudinalPlan.redLight = bool(self.cem.red_light_detected)
|
||||
@@ -140,3 +155,5 @@ class FrogPilotPlanner:
|
||||
self.acceleration_profile = params.get_int("AccelerationProfile") if longitudinal_tune else 0
|
||||
self.aggressive_acceleration = params.get_bool("AggressiveAcceleration") and longitudinal_tune
|
||||
self.increased_stopping_distance = params.get_int("StoppingDistance") * (1 if self.is_metric else CV.FOOT_TO_METER) if longitudinal_tune else 0
|
||||
|
||||
self.map_turn_speed_controller = params.get_bool("MTSCEnabled")
|
||||
|
||||
152
selfdrive/frogpilot/functions/map_turn_speed_controller.py
Normal file
152
selfdrive/frogpilot/functions/map_turn_speed_controller.py
Normal file
@@ -0,0 +1,152 @@
|
||||
import json
|
||||
import math
|
||||
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.numpy_fast import interp
|
||||
from openpilot.common.params import Params
|
||||
|
||||
params_memory = Params("/dev/shm/params")
|
||||
|
||||
R = 6373000.0 # approximate radius of earth in meters
|
||||
TO_RADIANS = math.pi / 180
|
||||
TO_DEGREES = 180 / math.pi
|
||||
TARGET_JERK = -0.6 # m/s^3 There's some jounce limits that are not consistent so we're fudging this some
|
||||
TARGET_ACCEL = -1.2 # m/s^2 should match up with the long planner limit
|
||||
TARGET_OFFSET = 1.0 # seconds - This controls how soon before the curve you reach the target velocity. It also helps
|
||||
# reach the target velocity when innacuracies in the distance modeling logic would cause overshoot.
|
||||
# The value is multiplied against the target velocity to determine the additional distance. This is
|
||||
# done to keep the distance calculations consistent but results in the offset actually being less
|
||||
# time than specified depending on how much of a speed diffrential there is between v_ego and the
|
||||
# target velocity.
|
||||
|
||||
def calculate_accel(t, target_jerk, a_ego):
|
||||
return a_ego + target_jerk * t
|
||||
|
||||
def calculate_distance(t, target_jerk, a_ego, v_ego):
|
||||
return t * v_ego + a_ego/2 * (t ** 2) + target_jerk/6 * (t ** 3)
|
||||
|
||||
def calculate_velocity(t, target_jerk, a_ego, v_ego):
|
||||
return v_ego + a_ego * t + target_jerk/2 * (t ** 2)
|
||||
|
||||
|
||||
# points should be in radians
|
||||
# output is meters
|
||||
def distance_to_point(ax, ay, bx, by):
|
||||
a = math.sin((bx-ax)/2)*math.sin((bx-ax)/2) + math.cos(ax) * math.cos(bx)*math.sin((by-ay)/2)*math.sin((by-ay)/2)
|
||||
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
|
||||
|
||||
return R * c # in meters
|
||||
|
||||
class MapTurnSpeedController:
|
||||
def __init__(self):
|
||||
self.target_lat = 0.0
|
||||
self.target_lon = 0.0
|
||||
self.target_v = 0.0
|
||||
|
||||
def target_speed(self, v_ego, a_ego) -> float:
|
||||
lat = 0.0
|
||||
lon = 0.0
|
||||
try:
|
||||
position = json.loads(params_memory.get("LastGPSPosition"))
|
||||
lat = position["latitude"]
|
||||
lon = position["longitude"]
|
||||
except: return 0.0
|
||||
|
||||
try:
|
||||
target_velocities = json.loads(params_memory.get("MapTargetVelocities"))
|
||||
except: return 0.0
|
||||
|
||||
min_dist = 1000
|
||||
min_idx = 0
|
||||
distances = []
|
||||
|
||||
# find our location in the path
|
||||
for i in range(len(target_velocities)):
|
||||
target_velocity = target_velocities[i]
|
||||
tlat = target_velocity["latitude"]
|
||||
tlon = target_velocity["longitude"]
|
||||
d = distance_to_point(lat * TO_RADIANS, lon * TO_RADIANS, tlat * TO_RADIANS, tlon * TO_RADIANS)
|
||||
distances.append(d)
|
||||
if d < min_dist:
|
||||
min_dist = d
|
||||
min_idx = i
|
||||
|
||||
# only look at values from our current position forward
|
||||
forward_points = target_velocities[min_idx:]
|
||||
forward_distances = distances[min_idx:]
|
||||
|
||||
# find velocities that we are within the distance we need to adjust for
|
||||
valid_velocities = []
|
||||
for i in range(len(forward_points)):
|
||||
target_velocity = forward_points[i]
|
||||
tlat = target_velocity["latitude"]
|
||||
tlon = target_velocity["longitude"]
|
||||
tv = target_velocity["velocity"]
|
||||
if tv > v_ego:
|
||||
continue
|
||||
|
||||
d = forward_distances[i]
|
||||
|
||||
a_diff = (a_ego - TARGET_ACCEL)
|
||||
accel_t = abs(a_diff / TARGET_JERK)
|
||||
min_accel_v = calculate_velocity(accel_t, TARGET_JERK, a_ego, v_ego)
|
||||
|
||||
max_d = 0
|
||||
if tv > min_accel_v:
|
||||
# calculate time needed based on target jerk
|
||||
a = 0.5 * TARGET_JERK
|
||||
b = a_ego
|
||||
c = v_ego - tv
|
||||
t_a = -1 * ((b**2 - 4 * a * c) ** 0.5 + b) / 2 * a
|
||||
t_b = ((b**2 - 4 * a * c) ** 0.5 - b) / 2 * a
|
||||
if not isinstance(t_a, complex) and t_a > 0:
|
||||
t = t_a
|
||||
else:
|
||||
t = t_b
|
||||
if isinstance(t, complex):
|
||||
continue
|
||||
|
||||
max_d = max_d + calculate_distance(t, TARGET_JERK, a_ego, v_ego)
|
||||
|
||||
else:
|
||||
t = accel_t
|
||||
max_d = calculate_distance(t, TARGET_JERK, a_ego, v_ego)
|
||||
|
||||
# calculate additional time needed based on target accel
|
||||
t = abs((min_accel_v - tv) / TARGET_ACCEL)
|
||||
max_d += calculate_distance(t, 0, TARGET_ACCEL, min_accel_v)
|
||||
|
||||
if d < max_d + tv * TARGET_OFFSET:
|
||||
valid_velocities.append((float(tv), tlat, tlon))
|
||||
|
||||
# Find the smallest velocity we need to adjust for
|
||||
min_v = 100.0
|
||||
target_lat = 0.0
|
||||
target_lon = 0.0
|
||||
for tv, lat, lon in valid_velocities:
|
||||
if tv < min_v:
|
||||
min_v = tv
|
||||
target_lat = lat
|
||||
target_lon = lon
|
||||
|
||||
if self.target_v < min_v and not (self.target_lat == 0 and self.target_lon == 0):
|
||||
for i in range(len(forward_points)):
|
||||
target_velocity = forward_points[i]
|
||||
tlat = target_velocity["latitude"]
|
||||
tlon = target_velocity["longitude"]
|
||||
tv = target_velocity["velocity"]
|
||||
if tv > v_ego:
|
||||
continue
|
||||
|
||||
if tlat == self.target_lat and tlon == self.target_lon and tv == self.target_v:
|
||||
return float(self.target_v)
|
||||
# not found so lets reset
|
||||
self.target_v = 0.0
|
||||
self.target_lat = 0.0
|
||||
self.target_lon = 0.0
|
||||
|
||||
self.target_v = min_v
|
||||
self.target_lat = target_lat
|
||||
self.target_lon = target_lon
|
||||
|
||||
return min_v
|
||||
@@ -30,6 +30,8 @@ FrogPilotControlsPanel::FrogPilotControlsPanel(SettingsWindow *parent) : FrogPil
|
||||
{"AccelerationProfile", "Acceleration Profile", "Change the acceleration rate to be either sporty or eco-friendly.", ""},
|
||||
{"AggressiveAcceleration", "Aggressive Acceleration With Lead", "Increase acceleration aggressiveness when following a lead vehicle from a stop.", ""},
|
||||
{"StoppingDistance", "Increased Stopping Distance", "Increase the stopping distance for a more comfortable stop.", ""},
|
||||
|
||||
{"MTSCEnabled", "Map Turn Speed Control", "Slow down for anticipated curves detected by your downloaded maps.", "../frogpilot/assets/toggle_icons/icon_speed_map.png"},
|
||||
};
|
||||
|
||||
for (const auto &[param, title, desc, icon] : controlToggles) {
|
||||
|
||||
@@ -493,7 +493,7 @@ void AnnotatedCameraWidget::drawHud(QPainter &p) {
|
||||
|
||||
QString speedLimitStr = (speedLimit > 1) ? QString::number(std::nearbyint(speedLimit)) : "–";
|
||||
QString speedStr = QString::number(std::nearbyint(speed));
|
||||
QString setSpeedStr = is_cruise_set ? QString::number(std::nearbyint(setSpeed)) : "–";
|
||||
QString setSpeedStr = is_cruise_set ? QString::number(std::nearbyint(setSpeed - cruiseAdjustment)) : "–";
|
||||
|
||||
// Draw outer box + border to contain set speed and speed limit
|
||||
const int sign_margin = 12;
|
||||
@@ -512,7 +512,16 @@ void AnnotatedCameraWidget::drawHud(QPainter &p) {
|
||||
int bottom_radius = has_eu_speed_limit ? 100 : 32;
|
||||
|
||||
QRect set_speed_rect(QPoint(60 + (default_size.width() - set_speed_size.width()) / 2, 45), set_speed_size);
|
||||
if (reverseCruise) {
|
||||
if (is_cruise_set && cruiseAdjustment) {
|
||||
float transition = qBound(0.0f, 4.0f * (cruiseAdjustment / setSpeed), 1.0f);
|
||||
QColor min = whiteColor(75), max = redColor(75);
|
||||
|
||||
p.setPen(QPen(QColor::fromRgbF(
|
||||
min.redF() + transition * (max.redF() - min.redF()),
|
||||
min.greenF() + transition * (max.greenF() - min.greenF()),
|
||||
min.blueF() + transition * (max.blueF() - min.blueF())
|
||||
), 6));
|
||||
} else if (reverseCruise) {
|
||||
p.setPen(QPen(QColor(0, 150, 255), 6));
|
||||
} else {
|
||||
p.setPen(QPen(whiteColor(75), 6));
|
||||
@@ -1085,6 +1094,7 @@ void AnnotatedCameraWidget::updateFrogPilotWidgets(QPainter &p) {
|
||||
conditionalSpeed = scene.conditional_speed;
|
||||
conditionalSpeedLead = scene.conditional_speed_lead;
|
||||
conditionalStatus = scene.conditional_status;
|
||||
cruiseAdjustment = fmax((0.1 * fmax(setSpeed - scene.adjusted_cruise, 0) + 0.9 * cruiseAdjustment) - 1, 0);
|
||||
customColors = scene.custom_colors;
|
||||
desiredFollow = scene.desired_follow;
|
||||
experimentalMode = scene.experimental_mode;
|
||||
|
||||
@@ -143,6 +143,7 @@ private:
|
||||
bool turnSignalRight;
|
||||
bool useSI;
|
||||
double maxAcceleration;
|
||||
float cruiseAdjustment;
|
||||
float laneWidthLeft;
|
||||
float laneWidthRight;
|
||||
int cameraView;
|
||||
|
||||
@@ -252,6 +252,7 @@ static void update_state(UIState *s) {
|
||||
scene.obstacle_distance_stock = frogpilotLongitudinalPlan.getSafeObstacleDistanceStock();
|
||||
scene.stopped_equivalence = frogpilotLongitudinalPlan.getStoppedEquivalenceFactor();
|
||||
}
|
||||
scene.adjusted_cruise = frogpilotLongitudinalPlan.getAdjustedCruise();
|
||||
}
|
||||
if (sm.updated("liveLocationKalman")) {
|
||||
auto liveLocationKalman = sm["liveLocationKalman"].getLiveLocationKalman();
|
||||
|
||||
@@ -193,6 +193,7 @@ typedef struct UIScene {
|
||||
bool turn_signal_right;
|
||||
bool unlimited_road_ui_length;
|
||||
bool use_si;
|
||||
float adjusted_cruise;
|
||||
float lane_line_width;
|
||||
float lane_width_left;
|
||||
float lane_width_right;
|
||||
|
||||
Reference in New Issue
Block a user