Calculate average desired curvature using planned distance
Added toggle to calculate average desired curvature using planned distance instead of the car's speed. Credit goes to Pfeiferj! https: //github.com/pfeiferj Co-Authored-By: Jacob Pfeifer <jacob@pfeifer.dev>
This commit is contained in:
@@ -649,7 +649,9 @@ class Controls:
|
||||
self.desired_curvature, self.desired_curvature_rate = get_lag_adjusted_curvature(self.CP, CS.vEgo,
|
||||
lat_plan.psis,
|
||||
lat_plan.curvatures,
|
||||
lat_plan.curvatureRates)
|
||||
lat_plan.curvatureRates,
|
||||
frogpilot_long_plan.distances,
|
||||
self.average_desired_curvature)
|
||||
actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp,
|
||||
self.steer_limited, self.desired_curvature,
|
||||
self.desired_curvature_rate, self.sm['liveLocationKalman'])
|
||||
@@ -940,6 +942,8 @@ class Controls:
|
||||
if hasattr(obj, 'update_frogpilot_params'):
|
||||
obj.update_frogpilot_params(self.params)
|
||||
|
||||
self.average_desired_curvature = self.params.get_bool("AverageCurvature")
|
||||
|
||||
longitudinal_tune = self.params.get_bool("LongitudinalTune")
|
||||
self.sport_plus = self.params.get_int("AccelerationProfile") == 3 and longitudinal_tune
|
||||
|
||||
|
||||
@@ -16,6 +16,7 @@ V_CRUISE_INITIAL = 40
|
||||
V_CRUISE_INITIAL_EXPERIMENTAL_MODE = 105
|
||||
IMPERIAL_INCREMENT = 1.6 # should be CV.MPH_TO_KPH, but this causes rounding errors
|
||||
|
||||
MIN_DIST = 0.001
|
||||
MIN_SPEED = 1.0
|
||||
CONTROL_N = 17
|
||||
CAR_ROTATION_RADIUS = 0.0
|
||||
@@ -163,11 +164,12 @@ def rate_limit(new_value, last_value, dw_step, up_step):
|
||||
return clip(new_value, last_value + dw_step, last_value + up_step)
|
||||
|
||||
|
||||
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
|
||||
if len(psis) != CONTROL_N:
|
||||
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates, distances, average_desired_curvature):
|
||||
if len(psis) != CONTROL_N or len(distances) != CONTROL_N:
|
||||
psis = [0.0]*CONTROL_N
|
||||
curvatures = [0.0]*CONTROL_N
|
||||
curvature_rates = [0.0]*CONTROL_N
|
||||
distances = [0.0]*CONTROL_N
|
||||
v_ego = max(MIN_SPEED, v_ego)
|
||||
|
||||
# TODO this needs more thought, use .2s extra for now to estimate other delays
|
||||
@@ -178,7 +180,10 @@ def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
|
||||
# psi to calculate a simple linearization of desired curvature
|
||||
current_curvature_desired = curvatures[0]
|
||||
psi = interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
|
||||
average_curvature_desired = psi / (v_ego * delay)
|
||||
# Pfeiferj's #28118 PR - https://github.com/commaai/openpilot/pull/28118
|
||||
distance = interp(delay, ModelConstants.T_IDXS[:CONTROL_N], distances)
|
||||
distance = max(MIN_DIST, distance)
|
||||
average_curvature_desired = psi / distance if average_desired_curvature else psi / (v_ego * delay)
|
||||
desired_curvature = 2 * average_curvature_desired - current_curvature_desired
|
||||
|
||||
# This is the "desired rate of the setpoint" not an actual desired rate
|
||||
|
||||
@@ -35,7 +35,10 @@ class LateralPlanner:
|
||||
if len(md.position.x) == TRAJECTORY_SIZE and len(md.velocity.x) == TRAJECTORY_SIZE and len(md.lateralPlannerSolution.x) == TRAJECTORY_SIZE:
|
||||
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
||||
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
|
||||
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
|
||||
if frogpilot_planner.average_desired_curvature:
|
||||
car_speed = np.array(md.velocity.x) - get_speed_error(md, v_ego_car)
|
||||
else:
|
||||
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
|
||||
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
|
||||
self.v_ego = self.v_plan[0]
|
||||
self.x_sol = np.column_stack([md.lateralPlannerSolution.x, md.lateralPlannerSolution.y, md.lateralPlannerSolution.yaw, md.lateralPlannerSolution.yawRate])
|
||||
|
||||
@@ -230,6 +230,7 @@ class LongitudinalMpc:
|
||||
# self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
|
||||
self.solver.reset()
|
||||
# self.solver.options_set('print_level', 2)
|
||||
self.x_solution = np.zeros(N+1)
|
||||
self.v_solution = np.zeros(N+1)
|
||||
self.a_solution = np.zeros(N+1)
|
||||
self.prev_a = np.array(self.a_solution)
|
||||
@@ -442,6 +443,7 @@ class LongitudinalMpc:
|
||||
for i in range(N):
|
||||
self.u_sol[i] = self.solver.get(i, 'u')
|
||||
|
||||
self.x_solution = self.x_sol[:,0]
|
||||
self.v_solution = self.x_sol[:,1]
|
||||
self.a_solution = self.x_sol[:,2]
|
||||
self.j_solution = self.u_sol[:,0]
|
||||
|
||||
Reference in New Issue
Block a user