Conditional Experimental Mode

Added toggles for "Conditional Experimental Mode".

Conditions based on road curvature, turn signals, speed, lead speed, navigation instructions, and stop signs/stop lights are all individually toggleable.
This commit is contained in:
FrogAi
2024-01-12 22:39:30 -07:00
parent c844593f66
commit ccf674762e
17 changed files with 378 additions and 12 deletions

View File

@@ -8,6 +8,8 @@ from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDX
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, A_CRUISE_MAX_VALS, A_CRUISE_MAX_BP, get_max_accel
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.frogpilot.functions.conditional_experimental_mode import ConditionalExperimentalMode
# Acceleration profiles - Credit goes to the DragonPilot team!
# MPH = [0., 35, 35, 40, 40, 45, 45, 67, 67, 67, 123]
A_CRUISE_MIN_BP_CUSTOM = [0., 2.0, 2.01, 11., 11.01, 18., 18.01, 28., 28.01, 33., 55.]
@@ -35,6 +37,8 @@ def get_max_accel_sport_tune(v_ego):
class FrogPilotPlanner:
def __init__(self, params):
self.cem = ConditionalExperimentalMode()
self.v_cruise = 0
self.x_desired_trajectory = np.zeros(CONTROL_N)
@@ -58,6 +62,10 @@ class FrogPilotPlanner:
else:
self.accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
# Conditional Experimental Mode
if self.conditional_experimental_mode and enabled:
self.cem.update(carState, sm['frogpilotNavigation'], sm['modelV2'], mpc, sm['radarState'], carState.standstill, v_ego)
self.v_cruise = self.update_v_cruise(carState, controlsState, modelData, enabled, v_cruise, v_ego)
self.x_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, mpc.x_solution)
@@ -79,6 +87,7 @@ class FrogPilotPlanner:
frogpilot_longitudinal_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
frogpilotLongitudinalPlan = frogpilot_longitudinal_plan_send.frogpilotLongitudinalPlan
frogpilotLongitudinalPlan.conditionalExperimental = self.cem.experimental_mode
frogpilotLongitudinalPlan.distances = self.x_desired_trajectory.tolist()
pm.send('frogpilotLongitudinalPlan', frogpilot_longitudinal_plan_send)
@@ -86,6 +95,12 @@ class FrogPilotPlanner:
def update_frogpilot_params(self, params):
self.is_metric = params.get_bool("IsMetric")
self.conditional_experimental_mode = params.get_bool("ConditionalExperimental")
if self.conditional_experimental_mode:
self.cem.update_frogpilot_params(self.is_metric, params)
if not params.get_bool("ExperimentalMode"):
params.put_bool("ExperimentalMode", True)
lateral_tune = params.get_bool("LateralTune")
self.average_desired_curvature = params.get_bool("AverageCurvature") and lateral_tune