Files
oscarpilot/selfdrive/frogpilot/functions/conditional_experimental_mode.py
Your Name b5fd185742 wip
2024-02-08 14:28:00 -06:00

211 lines
8.3 KiB
Python

import numpy as np
from cereal import car
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
# Constants
PROBABILITY = 0.6 # 60% chance of condition being true
THRESHOLD = 5 # Time threshold (0.25s)
SPEED_LIMIT = 25 # Speed limit for turn signal check
# Lookup table for stop sign / stop light detection
SLOW_DOWN_BP = [0., 10., 20., 30., 40., 50., 55.]
SLOW_DOWN_DISTANCE = [10, 30., 50., 70., 80., 90., 120.]
TRAJECTORY_SIZE = 33
class GenericMovingAverageCalculator:
def __init__(self):
self.data = []
self.total = 0
def add_data(self, value):
if len(self.data) == THRESHOLD:
self.total -= self.data.pop(0)
self.data.append(value)
self.total += value
def get_moving_average(self):
if len(self.data) == 0:
return None
return self.total / len(self.data)
def reset_data(self):
self.data = []
self.total = 0
class ConditionalExperimentalMode:
def __init__(self):
self.params_memory = Params("/dev/shm/params")
self.curve_detected = False
self.experimental_mode = False
self.lead_detected = False
self.lead_detected_previously = False
self.lead_slowing_down = False
self.red_light_detected = False
self.slower_lead_detected = False
self.slowing_down = False
self.previous_status_value = 0
self.previous_v_ego = 0
self.previous_v_lead = 0
self.status_value = 0
self.curvature_gmac = GenericMovingAverageCalculator()
self.lead_detection_gmac = GenericMovingAverageCalculator()
self.lead_slowing_down_gmac = GenericMovingAverageCalculator()
self.slow_down_gmac = GenericMovingAverageCalculator()
self.slow_lead_gmac = GenericMovingAverageCalculator()
self.slowing_down_gmac = GenericMovingAverageCalculator()
def update(self, carState, frogpilotNavigation, modelData, mpc, radarState, standstill, v_ego):
# Set the value of "overridden"
if self.experimental_mode_via_press:
overridden = self.params_memory.get_int("CEStatus")
else:
overridden = 0
# Update Experimental Mode based on the current driving conditions
condition_met = self.check_conditions(carState, frogpilotNavigation, modelData, standstill, v_ego)
if (not self.experimental_mode and condition_met and overridden not in (1, 3)) or overridden in (2, 4):
self.experimental_mode = True
elif (self.experimental_mode and not condition_met and overridden not in (2, 4)) or overridden in (1, 3):
self.experimental_mode = False
self.status_value = 0
# Update the onroad status bar
self.status_value = overridden if overridden in (1, 2, 3, 4) else self.status_value
if self.status_value != self.previous_status_value:
self.previous_status_value = self.status_value
self.params_memory.put_int("CEStatus", self.status_value)
self.update_conditions(modelData, mpc, radarState, v_ego)
# Check conditions for the appropriate state of Experimental Mode
def check_conditions(self, carState, frogpilotNavigation, modelData, standstill, v_ego):
if standstill:
return self.experimental_mode
# Keep Experimental Mode active if slowing down for a red light
if self.slowing_down and self.status_value == 12 and not self.lead_slowing_down:
return True
# Navigation check
if self.navigation and modelData.navEnabled and frogpilotNavigation.navigationConditionMet:
self.status_value = 5
return True
# Speed Limit Controller check
if self.params_memory.get_bool("SLCExperimentalMode"):
self.status_value = 6
return True
# Speed check
if (not self.lead_detected and v_ego < self.limit) or (self.lead_detected and v_ego < self.limit_lead):
self.status_value = 7 if self.lead_detected else 8
return True
# Slower lead check
if self.slower_lead and self.slower_lead_detected:
self.status_value = 9
return True
# Turn signal check
if self.signal and v_ego < SPEED_LIMIT and (carState.leftBlinker or carState.rightBlinker):
self.status_value = 10
return True
# Road curvature check
if self.curves and self.curve_detected and (self.curves_lead or not self.lead_detected):
self.status_value = 11
return True
# Stop sign and light check
if self.stop_lights and self.red_light_detected and (self.stop_lights_lead or not self.lead_slowing_down):
self.status_value = 12
return True
return False
def update_conditions(self, modelData, mpc, radarState, v_ego):
self.lead_detection(radarState)
self.road_curvature(modelData, v_ego)
self.slow_lead(mpc, radarState, v_ego)
# self.stop_sign_and_light(modelData, v_ego)
self.v_ego_slowing_down(v_ego)
self.v_lead_slowing_down(mpc, radarState)
def v_ego_slowing_down(self, v_ego):
self.slowing_down_gmac.add_data(v_ego < self.previous_v_ego)
self.slowing_down = self.slowing_down_gmac.get_moving_average() >= PROBABILITY
self.previous_v_ego = v_ego
def v_lead_slowing_down(self, mpc, radarState):
if self.lead_detected:
v_lead = radarState.leadOne.vLead
self.lead_slowing_down_gmac.add_data(v_lead < self.previous_v_lead or v_lead < 1 or radarState.leadOne.dRel <= v_lead * mpc.t_follow)
self.lead_slowing_down = self.lead_slowing_down_gmac.get_moving_average() >= PROBABILITY
self.previous_v_lead = v_lead
else:
self.lead_slowing_down_gmac.reset_data()
self.lead_slowing_down = False
self.previous_v_lead = 0
# Lead detection
def lead_detection(self, radarState):
self.lead_detection_gmac.add_data(radarState.leadOne.status)
self.lead_detected = self.lead_detection_gmac.get_moving_average() >= PROBABILITY
# Determine the road curvature - Credit goes to to Pfeiferj!
def road_curvature(self, modelData, v_ego):
predicted_velocities = np.array(modelData.velocity.x)
if predicted_velocities.size:
curvature_ratios = np.abs(np.array(modelData.acceleration.y)) / (predicted_velocities**2)
curvature = np.amax(curvature_ratios * (v_ego**2))
# Setting an upper limit of "5.0" helps prevent it activating at stop lights
if curvature > 5.0:
self.curvature_gmac.reset_data()
self.curve_detected = False
else:
self.curvature_gmac.add_data(curvature > 1.6 or self.curve_detected and curvature > 1.1)
self.curve_detected = self.curvature_gmac.get_moving_average() >= PROBABILITY
else:
self.curvature_gmac.reset_data()
# Slower lead detection - Credit goes to the DragonPilot team!
def slow_lead(self, mpc, radarState, v_ego):
if not self.lead_detected and self.lead_detected_previously:
self.slow_lead_gmac.reset_data()
self.slower_lead_detected = False
if self.lead_detected and v_ego >= 0.01:
self.slow_lead_gmac.add_data(radarState.leadOne.dRel < (v_ego - 1) * mpc.t_follow)
self.slower_lead_detected = self.slow_lead_gmac.get_moving_average() >= PROBABILITY
self.lead_detected_previously = self.lead_detected
# Stop sign/stop light detection - Credit goes to the DragonPilot team!
def stop_sign_and_light(self, modelData, v_ego):
# Check if the model data is consistent and wants to stop
model_check = len(modelData.orientation.x) == len(modelData.position.x) == TRAJECTORY_SIZE
model_stopping = modelData.position.x[TRAJECTORY_SIZE - 1] < interp(v_ego * CV.MS_TO_KPH, SLOW_DOWN_BP, SLOW_DOWN_DISTANCE)
self.slow_down_gmac.add_data(model_check and model_stopping and not self.curve_detected and not self.slower_lead_detected)
self.red_light_detected = self.slow_down_gmac.get_moving_average() >= PROBABILITY
def update_frogpilot_params(self, is_metric, params):
self.curves = params.get_bool("CECurves")
self.curves_lead = params.get_bool("CECurvesLead")
self.experimental_mode_via_press = params.get_bool("ExperimentalModeActivation")
self.limit = params.get_int("CESpeed") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.limit_lead = params.get_int("CESpeedLead") * (CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS)
self.navigation = params.get_bool("CENavigation")
self.signal = params.get_bool("CESignal")
self.slower_lead = params.get_bool("CESlowerLead")
self.stop_lights = params.get_bool("CEStopLights")
self.stop_lights_lead = params.get_bool("CEStopLightsLead")