Files
oscarpilot/selfdrive/frogpilot/functions/frogpilot_planner.py
FrogAi d6e17df710 Custom UI
Added toggles to customize the lane lines, path, road edges, path edges, show the acceleration/deceleration on the path, lead info, driving logics, adjacent lanes, blind spot path, fps tracker, and an "Unlimited Length" mode that extends the road UI out as far as the model can see.
2024-01-26 10:51:37 -07:00

141 lines
6.7 KiB
Python

import cereal.messaging as messaging
import numpy as np
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, V_CRUISE_MAX
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, A_CRUISE_MAX_VALS, A_CRUISE_MAX_BP, get_max_accel
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.frogpilot.functions.conditional_experimental_mode import ConditionalExperimentalMode
# Acceleration profiles - Credit goes to the DragonPilot team!
# MPH = [0., 35, 35, 40, 40, 45, 45, 67, 67, 67, 123]
A_CRUISE_MIN_BP_CUSTOM = [0., 2.0, 2.01, 11., 11.01, 18., 18.01, 28., 28.01, 33., 55.]
# MPH = [0., 6.71, 13.4, 17.9, 24.6, 33.6, 44.7, 55.9, 67.1, 123]
A_CRUISE_MAX_BP_CUSTOM = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.]
A_CRUISE_MIN_VALS_ECO_TUNE = [-0.480, -0.480, -0.40, -0.40, -0.40, -0.36, -0.32, -0.28, -0.28, -0.25, -0.25]
A_CRUISE_MAX_VALS_ECO_TUNE = [3.5, 3.3, 1.7, 1.1, .76, .62, .47, .36, .28, .09]
A_CRUISE_MIN_VALS_SPORT_TUNE = [-0.500, -0.500, -0.42, -0.42, -0.42, -0.42, -0.40, -0.35, -0.35, -0.30, -0.30]
A_CRUISE_MAX_VALS_SPORT_TUNE = [3.5, 3.5, 3.0, 2.6, 1.4, 1.0, 0.7, 0.6, .38, .2]
def get_min_accel_eco_tune(v_ego):
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_ECO_TUNE)
def get_max_accel_eco_tune(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_ECO_TUNE)
def get_min_accel_sport_tune(v_ego):
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_SPORT_TUNE)
def get_max_accel_sport_tune(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_SPORT_TUNE)
def calculate_lane_width(lane, current_lane, road_edge):
lane_x, lane_y = np.array(lane.x), np.array(lane.y)
edge_x, edge_y = np.array(road_edge.x), np.array(road_edge.y)
current_x, current_y = np.array(current_lane.x), np.array(current_lane.y)
lane_y_interp = np.interp(current_x, lane_x[lane_x.argsort()], lane_y[lane_x.argsort()])
road_edge_y_interp = np.interp(current_x, edge_x[edge_x.argsort()], edge_y[edge_x.argsort()])
distance_to_lane = np.mean(np.abs(current_y - lane_y_interp))
distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp))
return min(distance_to_lane, distance_to_road_edge)
class FrogPilotPlanner:
def __init__(self, params):
self.cem = ConditionalExperimentalMode()
self.v_cruise = 0
self.x_desired_trajectory = np.zeros(CONTROL_N)
self.update_frogpilot_params(params)
def update(self, sm, mpc):
carState, controlsState, modelData = sm['carState'], sm['controlsState'], sm['modelV2']
enabled = controlsState.enabled
v_cruise_kph = min(controlsState.vCruise, V_CRUISE_MAX)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
v_ego = carState.vEgo
# Acceleration profiles
if self.acceleration_profile == 1:
self.accel_limits = [get_min_accel_eco_tune(v_ego), get_max_accel_eco_tune(v_ego)]
elif self.acceleration_profile in (2, 3):
self.accel_limits = [get_min_accel_sport_tune(v_ego), get_max_accel_sport_tune(v_ego)]
else:
self.accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
# Conditional Experimental Mode
if self.conditional_experimental_mode and enabled:
self.cem.update(carState, sm['frogpilotNavigation'], sm['modelV2'], mpc, sm['radarState'], carState.standstill, v_ego)
self.v_cruise = self.update_v_cruise(carState, controlsState, modelData, enabled, v_cruise, v_ego)
self.x_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, mpc.x_solution)
self.x_desired_trajectory = self.x_desired_trajectory_full[:CONTROL_N]
def update_v_cruise(self, carState, controlsState, modelData, enabled, v_cruise, v_ego):
v_ego_diff = max(carState.vEgoRaw - carState.vEgoCluster, 0)
return v_cruise - v_ego_diff
def publish_lateral(self, sm, pm, DH):
frogpilot_lateral_plan_send = messaging.new_message('frogpilotLateralPlan')
frogpilot_lateral_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
frogpilotLateralPlan = frogpilot_lateral_plan_send.frogpilotLateralPlan
frogpilotLateralPlan.laneWidthLeft = float(DH.lane_width_left)
frogpilotLateralPlan.laneWidthRight = float(DH.lane_width_right)
pm.send('frogpilotLateralPlan', frogpilot_lateral_plan_send)
def publish_longitudinal(self, sm, pm, mpc):
frogpilot_longitudinal_plan_send = messaging.new_message('frogpilotLongitudinalPlan')
frogpilot_longitudinal_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
frogpilotLongitudinalPlan = frogpilot_longitudinal_plan_send.frogpilotLongitudinalPlan
frogpilotLongitudinalPlan.conditionalExperimental = self.cem.experimental_mode
frogpilotLongitudinalPlan.distances = self.x_desired_trajectory.tolist()
frogpilotLongitudinalPlan.safeObstacleDistance = mpc.safe_obstacle_distance
frogpilotLongitudinalPlan.stoppedEquivalenceFactor = mpc.stopped_equivalence_factor
frogpilotLongitudinalPlan.desiredFollowDistance = mpc.safe_obstacle_distance - mpc.stopped_equivalence_factor
frogpilotLongitudinalPlan.safeObstacleDistanceStock = mpc.safe_obstacle_distance_stock
pm.send('frogpilotLongitudinalPlan', frogpilot_longitudinal_plan_send)
def update_frogpilot_params(self, params):
self.is_metric = params.get_bool("IsMetric")
self.blindspot_path = params.get_bool("CustomUI") and params.get_bool("BlindSpotPath")
self.conditional_experimental_mode = params.get_bool("ConditionalExperimental")
if self.conditional_experimental_mode:
self.cem.update_frogpilot_params(self.is_metric, params)
if not params.get_bool("ExperimentalMode"):
params.put_bool("ExperimentalMode", True)
self.custom_personalities = params.get_bool("CustomPersonalities")
self.aggressive_follow = params.get_int("AggressiveFollow") / 10
self.standard_follow = params.get_int("StandardFollow") / 10
self.relaxed_follow = params.get_int("RelaxedFollow") / 10
self.aggressive_jerk = params.get_int("AggressiveJerk") / 10
self.standard_jerk = params.get_int("StandardJerk") / 10
self.relaxed_jerk = params.get_int("RelaxedJerk") / 10
lateral_tune = params.get_bool("LateralTune")
self.average_desired_curvature = params.get_bool("AverageCurvature") and lateral_tune
longitudinal_tune = params.get_bool("LongitudinalTune")
self.acceleration_profile = params.get_int("AccelerationProfile") if longitudinal_tune else 0
self.aggressive_acceleration = params.get_bool("AggressiveAcceleration") and longitudinal_tune