Added toggles for nudgeless lane changes, lane detection, and one lane change per signal activation with a lane change delay factor.
173 lines
7.7 KiB
Python
173 lines
7.7 KiB
Python
import cereal.messaging as messaging
|
|
import numpy as np
|
|
|
|
from openpilot.common.conversions import Conversions as CV
|
|
from openpilot.common.numpy_fast import clip
|
|
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
|
|
from openpilot.selfdrive.controls.lib.desire_helper import LANE_CHANGE_SPEED_MIN
|
|
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import STOP_DISTANCE
|
|
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, get_max_accel
|
|
|
|
from openpilot.selfdrive.frogpilot.functions.frogpilot_functions import CRUISING_SPEED, FrogPilotFunctions
|
|
|
|
from openpilot.selfdrive.frogpilot.functions.conditional_experimental_mode import ConditionalExperimentalMode
|
|
from openpilot.selfdrive.frogpilot.functions.map_turn_speed_controller import MapTurnSpeedController
|
|
|
|
|
|
class FrogPilotPlanner:
|
|
def __init__(self, CP, params, params_memory):
|
|
self.CP = CP
|
|
self.params_memory = params_memory
|
|
|
|
self.fpf = FrogPilotFunctions()
|
|
|
|
self.cem = ConditionalExperimentalMode(self.params_memory)
|
|
self.mtsc = MapTurnSpeedController()
|
|
|
|
self.mtsc_target = 0
|
|
self.road_curvature = 0
|
|
self.stop_distance = 0
|
|
self.v_cruise = 0
|
|
|
|
self.accel_limits = [A_CRUISE_MIN, get_max_accel(0)]
|
|
|
|
self.update_frogpilot_params(params)
|
|
|
|
def update(self, carState, controlsState, modelData, mpc, sm, v_cruise, v_ego):
|
|
enabled = controlsState.enabled
|
|
|
|
# Use the stock deceleration profile to handle MTSC more precisely
|
|
v_cruise_changed = self.mtsc_target < v_cruise
|
|
|
|
# Configure the deceleration profile
|
|
if v_cruise_changed:
|
|
min_accel = A_CRUISE_MIN
|
|
elif self.deceleration_profile == 1:
|
|
min_accel = self.fpf.get_min_accel_eco(v_ego)
|
|
elif self.deceleration_profile == 2:
|
|
min_accel = self.fpf.get_min_accel_sport(v_ego)
|
|
elif mpc.mode == 'acc':
|
|
min_accel = A_CRUISE_MIN
|
|
else:
|
|
min_accel = ACCEL_MIN
|
|
|
|
# Configure the acceleration profile
|
|
if self.acceleration_profile == 1:
|
|
max_accel = self.fpf.get_max_accel_eco(v_ego)
|
|
elif self.acceleration_profile in (2, 3):
|
|
max_accel = self.fpf.get_max_accel_sport(v_ego)
|
|
elif mpc.mode == 'acc':
|
|
max_accel = get_max_accel(v_ego)
|
|
else:
|
|
max_accel = ACCEL_MAX
|
|
|
|
self.accel_limits = [min_accel, max_accel]
|
|
|
|
# Update Conditional Experimental Mode
|
|
if self.conditional_experimental_mode and self.CP.openpilotLongitudinalControl or self.green_light_alert and carState.standstill:
|
|
self.cem.update(carState, enabled, sm['frogpilotNavigation'], modelData, sm['radarState'], self.road_curvature, self.stop_distance, mpc.t_follow, v_ego)
|
|
|
|
# Update the current lane widths
|
|
check_lane_width = self.adjacent_lanes or self.blind_spot_path or self.lane_detection
|
|
if check_lane_width and v_ego >= LANE_CHANGE_SPEED_MIN:
|
|
self.lane_width_left = float(self.fpf.calculate_lane_width(modelData.laneLines[0], modelData.laneLines[1], modelData.roadEdges[0]))
|
|
self.lane_width_right = float(self.fpf.calculate_lane_width(modelData.laneLines[3], modelData.laneLines[2], modelData.roadEdges[1]))
|
|
else:
|
|
self.lane_width_left = 0
|
|
self.lane_width_right = 0
|
|
|
|
# Update the current road curvature
|
|
self.road_curvature = self.fpf.road_curvature(modelData, v_ego)
|
|
|
|
# Update the desired stopping distance
|
|
self.stop_distance = STOP_DISTANCE
|
|
|
|
# Update the max allowed speed
|
|
self.v_cruise = self.update_v_cruise(carState, controlsState, enabled, modelData, v_cruise, v_ego)
|
|
|
|
def update_v_cruise(self, carState, controlsState, enabled, modelData, v_cruise, v_ego):
|
|
# Offsets to adjust the max speed to match the cluster
|
|
v_ego_cluster = max(carState.vEgoCluster, v_ego)
|
|
v_ego_diff = v_ego_cluster - v_ego
|
|
|
|
v_cruise_cluster = max(controlsState.vCruiseCluster, controlsState.vCruise) * CV.KPH_TO_MS
|
|
v_cruise_diff = v_cruise_cluster - v_cruise
|
|
|
|
# Pfeiferj's Map Turn Speed Controller
|
|
if self.map_turn_speed_controller and v_ego > CRUISING_SPEED and enabled:
|
|
mtsc_active = self.mtsc_target < v_cruise
|
|
self.mtsc_target = np.clip(self.mtsc.target_speed(v_ego, carState.aEgo), CRUISING_SPEED, v_cruise)
|
|
|
|
# MTSC failsafes
|
|
if self.mtsc_curvature_check and self.road_curvature < 1.0 and not mtsc_active:
|
|
self.mtsc_target = v_cruise
|
|
if v_ego - self.mtsc_limit >= self.mtsc_target:
|
|
self.mtsc_target = v_cruise
|
|
else:
|
|
self.mtsc_target = v_cruise
|
|
|
|
targets = [self.mtsc_target]
|
|
filtered_targets = [target for target in targets if target > CRUISING_SPEED]
|
|
|
|
return min(filtered_targets) if filtered_targets else v_cruise
|
|
|
|
def publish(self, sm, pm, mpc):
|
|
frogpilot_plan_send = messaging.new_message('frogpilotPlan')
|
|
frogpilot_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
|
|
frogpilotPlan = frogpilot_plan_send.frogpilotPlan
|
|
|
|
frogpilotPlan.adjustedCruise = float(self.mtsc_target * (CV.MS_TO_KPH if self.is_metric else CV.MS_TO_MPH))
|
|
frogpilotPlan.conditionalExperimental = self.cem.experimental_mode
|
|
|
|
frogpilotPlan.desiredFollowDistance = mpc.safe_obstacle_distance - mpc.stopped_equivalence_factor
|
|
frogpilotPlan.safeObstacleDistance = mpc.safe_obstacle_distance
|
|
frogpilotPlan.safeObstacleDistanceStock = mpc.safe_obstacle_distance_stock
|
|
frogpilotPlan.stoppedEquivalenceFactor = mpc.stopped_equivalence_factor
|
|
|
|
frogpilotPlan.laneWidthLeft = self.lane_width_left
|
|
frogpilotPlan.laneWidthRight = self.lane_width_right
|
|
|
|
frogpilotPlan.redLight = self.cem.red_light_detected
|
|
|
|
pm.send('frogpilotPlan', frogpilot_plan_send)
|
|
|
|
def update_frogpilot_params(self, params):
|
|
self.is_metric = params.get_bool("IsMetric")
|
|
|
|
self.conditional_experimental_mode = params.get_bool("ConditionalExperimental")
|
|
if self.conditional_experimental_mode:
|
|
self.cem.update_frogpilot_params(self.is_metric, params)
|
|
params.put_bool("ExperimentalMode", True)
|
|
|
|
custom_alerts = params.get_bool("CustomAlerts")
|
|
self.green_light_alert = custom_alerts and params.get_bool("GreenLightAlert")
|
|
if self.green_light_alert and not self.conditional_experimental_mode:
|
|
self.cem.update_frogpilot_params(self.is_metric, params)
|
|
|
|
self.custom_personalities = params.get_bool("CustomPersonalities")
|
|
self.aggressive_follow = params.get_float("AggressiveFollow")
|
|
self.standard_follow = params.get_float("StandardFollow")
|
|
self.relaxed_follow = params.get_float("RelaxedFollow")
|
|
self.aggressive_jerk = params.get_float("AggressiveJerk")
|
|
self.standard_jerk = params.get_float("StandardJerk")
|
|
self.relaxed_jerk = params.get_float("RelaxedJerk")
|
|
|
|
custom_ui = params.get_bool("CustomUI")
|
|
self.adjacent_lanes = custom_ui and params.get_bool("AdjacentPath")
|
|
self.blind_spot_path = custom_ui and params.get_bool("BlindSpotPath")
|
|
|
|
nudgeless_lane_change = params.get_bool("NudgelessLaneChange")
|
|
self.lane_detection = nudgeless_lane_change and params.get_bool("LaneDetection")
|
|
|
|
longitudinal_tune = params.get_bool("LongitudinalTune")
|
|
self.acceleration_profile = params.get_int("AccelerationProfile") if longitudinal_tune else 0
|
|
self.deceleration_profile = params.get_int("DecelerationProfile") if longitudinal_tune else 0
|
|
self.aggressive_acceleration = longitudinal_tune and params.get_bool("AggressiveAcceleration")
|
|
self.increased_stopping_distance = params.get_int("StoppingDistance") * (1 if self.is_metric else CV.FOOT_TO_METER) if longitudinal_tune else 0
|
|
|
|
self.map_turn_speed_controller = params.get_bool("MTSCEnabled")
|
|
if self.map_turn_speed_controller:
|
|
self.mtsc_curvature_check = params.get_bool("MTSCCurvatureCheck")
|
|
self.mtsc_limit = params.get_float("MTSCLimit") * (CV.KPH_TO_MS if self.is_metric else CV.MPH_TO_MS)
|
|
self.params_memory.put_float("MapTargetLatA", 2 * (params.get_int("MTSCAggressiveness") / 100))
|